BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23281475)

  • 1. Reply to Pancheva, Panchev, and Pancheva.
    Barrett-O'Keefe Z; Helgerud J; Wagner PD; Richardson RS
    J Appl Physiol (1985); 2013 Jan; 114(1):157. PubMed ID: 23281475
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermally governed local blood flow regulation by the capillary pumps and CO2 is the basis of the improved work efficiency of the trained muscle bed.
    Pancheva AV; Panchev VS; Pancheva MV
    J Appl Physiol (1985); 2013 Jan; 114(1):156. PubMed ID: 23281474
    [No Abstract]   [Full Text] [Related]  

  • 3. Maximal strength training and increased work efficiency: contribution from the trained muscle bed.
    Barrett-O'Keefe Z; Helgerud J; Wagner PD; Richardson RS
    J Appl Physiol (1985); 2012 Dec; 113(12):1846-51. PubMed ID: 22984253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point: the kinetics of oxygen uptake during muscular exercise do manifest time-delayed phases.
    Whipp BJ
    J Appl Physiol (1985); 2009 Nov; 107(5):1663-5. PubMed ID: 19228993
    [No Abstract]   [Full Text] [Related]  

  • 5. Very intense exercise-training is extremely potent and time efficient: a reminder.
    Coyle EF
    J Appl Physiol (1985); 2005 Jun; 98(6):1983-4. PubMed ID: 15894535
    [No Abstract]   [Full Text] [Related]  

  • 6. Counterpoint: the kinetics of oxygen uptake during muscular exercise do not manifest time-delayed phases.
    Stirling JR; Zakynthinaki M
    J Appl Physiol (1985); 2009 Nov; 107(5):1665-7; discussion 1667-8. PubMed ID: 19890030
    [No Abstract]   [Full Text] [Related]  

  • 7. The low intracellular oxygen tension during exercise is a function of limited oxygen supply and high mitochondrial oxygen affinity.
    Larsen FJ; Ekblom B
    Eur J Appl Physiol; 2012 Nov; 112(11):3935-6; author reply 3937-8. PubMed ID: 22446957
    [No Abstract]   [Full Text] [Related]  

  • 8. The athlete with maintained cerebral oxygenation breaks the record.
    Nielsen HB; Seifert T
    J Appl Physiol (1985); 2011 Jan; 110(1):292; discussion 294. PubMed ID: 21542180
    [No Abstract]   [Full Text] [Related]  

  • 9. One-arm maximal strength training improves work economy and endurance capacity but not skeletal muscle blood flow.
    Kemi OJ; Rognmo O; Amundsen BH; Stordahl S; Richardson RS; Helgerud J; Hoff J
    J Sports Sci; 2011 Jan; 29(2):161-70. PubMed ID: 21170803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Last word on point:counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases.
    Stirling JR; Zakynthinaki M
    J Appl Physiol (1985); 2009 Nov; 107(5):1676. PubMed ID: 19890034
    [No Abstract]   [Full Text] [Related]  

  • 11. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Insights from kinetics models.
    Gimenez P; Busso T
    J Appl Physiol (1985); 2009 Nov; 107(5):1671. PubMed ID: 19899204
    [No Abstract]   [Full Text] [Related]  

  • 12. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Delays and their determinants.
    Jones AM
    J Appl Physiol (1985); 2009 Nov; 107(5):1670. PubMed ID: 19899202
    [No Abstract]   [Full Text] [Related]  

  • 13. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Modeling concerns.
    Millet GP; Borrani F
    J Appl Physiol (1985); 2009 Nov; 107(5):1669-70. PubMed ID: 19899201
    [No Abstract]   [Full Text] [Related]  

  • 14. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases. Profiles of the muscle fiber recruitment and the time-delayed slow phase.
    Perrey S
    J Appl Physiol (1985); 2009 Nov; 107(5):1669. PubMed ID: 19890033
    [No Abstract]   [Full Text] [Related]  

  • 15. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Muscle oxygen uptake is delayed at onset of exercise in humans.
    Bangsbo J
    J Appl Physiol (1985); 2009 Nov; 107(5):1673-4. PubMed ID: 19899211
    [No Abstract]   [Full Text] [Related]  

  • 16. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. Kinetics of oxygen uptake are complex and multiphase.
    Hughson RL
    J Appl Physiol (1985); 2009 Nov; 107(5):1671. PubMed ID: 19899205
    [No Abstract]   [Full Text] [Related]  

  • 17. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phase. On the physiological issue of td determination with empirical modeling.
    Perrey S
    J Appl Physiol (1985); 2009 Nov; 107(5):1672-3. PubMed ID: 19899208
    [No Abstract]   [Full Text] [Related]  

  • 18. The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.
    Muthalib M; Lee H; Millet GY; Ferrari M; Nosaka K
    J Appl Physiol (1985); 2011 May; 110(5):1390-9. PubMed ID: 21330620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturity effect of training.
    Schubert MM
    J Appl Physiol (1985); 2011 Jan; 110(1):279; discussion 294. PubMed ID: 21542149
    [No Abstract]   [Full Text] [Related]  

  • 20. Comments on point: counterpoint: the kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases. Profiles of the muscle fiber recruitment and the time-delayed slow phase.
    Burnley M
    J Appl Physiol (1985); 2009 Nov; 107(5):1669. PubMed ID: 19899200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.