BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 23281510)

  • 21. Neurological aspects of spinal-cord repair: promises and challenges.
    Dietz V; Curt A
    Lancet Neurol; 2006 Aug; 5(8):688-94. PubMed ID: 16857574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Strategies to repair lost sensory connections to the spinal cord].
    Kozlova EN
    Mol Biol (Mosk); 2008; 42(5):820-9. PubMed ID: 18988531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration.
    Tabesh H; Amoabediny G; Nik NS; Heydari M; Yosefifard M; Siadat SO; Mottaghy K
    Neurochem Int; 2009 Feb; 54(2):73-83. PubMed ID: 19084565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats.
    Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J
    J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair.
    Blesch A; Lu P; Tuszynski MH
    Brain Res Bull; 2002 Apr; 57(6):833-8. PubMed ID: 12031281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM
    Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From bench to beside to cure spinal cord injury: lost in translation?
    Hug A; Weidner N
    Int Rev Neurobiol; 2012; 106():173-96. PubMed ID: 23211464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Translating preclinical approaches into human application.
    Dietz V; Curt A
    Handb Clin Neurol; 2012; 109():399-409. PubMed ID: 23098727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Tissue Geometry in Spinal Cord Regeneration.
    Pettigrew DB; Singh N; Kirthivasan S; Crutcher KA
    Medicina (Kaunas); 2022 Apr; 58(4):. PubMed ID: 35454380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.
    Geoffroy CG; Meves JM; Zheng B
    Neurosci Lett; 2017 Jun; 652():41-49. PubMed ID: 27818358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury.
    Gu M; Gao Z; Li X; Guo L; Lu T; Li Y; He X
    Brain Res; 2017 Jan; 1654(Pt A):43-54. PubMed ID: 27789279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury.
    Kwon BK; Liu J; Messerer C; Kobayashi NR; McGraw J; Oschipok L; Tetzlaff W
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3246-51. PubMed ID: 11867727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroprotection and regeneration strategies for spinal cord repair.
    Tsai EC; Tator CH
    Curr Pharm Des; 2005; 11(10):1211-22. PubMed ID: 15853678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.