These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23281654)

  • 1. Gene trees and species trees: irreconcilable differences.
    Swenson KM; El-Mabrouk N
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S15. PubMed ID: 23281654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconciliation with non-binary species trees.
    Vernot B; Stolzer M; Goldman A; Durand D
    J Comput Biol; 2008 Oct; 15(8):981-1006. PubMed ID: 18808330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring duplication episodes from unrooted gene trees.
    Paszek J; Górecki P
    BMC Genomics; 2018 May; 19(Suppl 5):288. PubMed ID: 29745844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GATC: a genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution.
    Noutahi E; El-Mabrouk N
    BMC Genomics; 2018 May; 19(Suppl 2):102. PubMed ID: 29764363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss.
    Morel B; Williams TA; Stamatakis A; Szöllősi GJ
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithms for genome-scale phylogenetics using gene tree parsimony.
    Bansal MS; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):939-56. PubMed ID: 24334388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum parsimony reconciliation in the DTLOR model.
    Liu J; Mawhorter R; Liu N; Santichaivekin S; Bush E; Libeskind-Hadas R
    BMC Bioinformatics; 2021 Aug; 22(Suppl 10):394. PubMed ID: 34348661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree.
    Wu T; Zhang L
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S7. PubMed ID: 22151151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale coestimation of species and gene trees.
    Boussau B; Szöllosi GJ; Duret L; Gouy M; Tannier E; Daubin V
    Genome Res; 2013 Feb; 23(2):323-30. PubMed ID: 23132911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the impact of uncertain gene tree rooting on duplication-transfer-loss reconciliation.
    Kundu S; Bansal MS
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):290. PubMed ID: 30367593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iGTP: a software package for large-scale gene tree parsimony analysis.
    Chaudhary R; Bansal MS; Wehe A; Fernández-Baca D; Eulenstein O
    BMC Bioinformatics; 2010 Nov; 11():574. PubMed ID: 21092314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconciling event-labeled gene trees with MUL-trees and species networks.
    Hellmuth M; Huber KT; Moulton V
    J Math Biol; 2019 Oct; 79(5):1885-1925. PubMed ID: 31410552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are the duplication cost and Robinson-Foulds distance equivalent?
    Zheng Y; Zhang L
    J Comput Biol; 2014 Aug; 21(8):578-90. PubMed ID: 24988427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2019 Jul; 36(7):1384-1404. PubMed ID: 31004147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring angiosperm phylogeny from EST data with widespread gene duplication.
    Sanderson MJ; McMahon MM
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S3. PubMed ID: 17288576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.