These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23281832)

  • 21. Prediction errors in self- and externally-generated deviants.
    Knolle F; Schröger E; Kotz SA
    Biol Psychol; 2013 Feb; 92(2):410-6. PubMed ID: 23246535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.
    Stekelenburg JJ; Vroomen J
    Brain Res; 2015 Nov; 1626():88-96. PubMed ID: 25641042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing of self-initiated sound motion in the human brain.
    Altmann CF; Yamasaki D; Song Y; Bucher B
    Brain Res; 2021 Jul; 1762():147433. PubMed ID: 33737062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attention-dependent sound offset-related brain potentials.
    Horváth J
    Psychophysiology; 2016 May; 53(5):663-77. PubMed ID: 26757414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The N1 effect of temporal attention is independent of sound location and intensity: implications for possible mechanisms of temporal attention.
    Lange K
    Psychophysiology; 2012 Nov; 49(11):1468-80. PubMed ID: 23046461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of the auditory N1 by visual anticipatory motion is modulated by temporal and identity predictability.
    van Laarhoven T; Stekelenburg JJ; Vroomen J
    Psychophysiology; 2021 Mar; 58(3):e13749. PubMed ID: 33355930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ERP correlates of processing the auditory consequences of own versus observed actions.
    Ghio M; Scharmach K; Bellebaum C
    Psychophysiology; 2018 Jun; 55(6):e13048. PubMed ID: 29266338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Memory-based pre-attentive auditory N1 elicited by sound movement.
    Ohoyama K; Motomura E; Inui K; Nishihara M; Otsuru N; Oi M; Kakigi R; Okada M
    Neurosci Res; 2012 Jul; 73(3):248-51. PubMed ID: 22525281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions.
    Woods DL; Knight RT; Scabini D
    Brain Res Cogn Brain Res; 1993 Dec; 1(4):227-40. PubMed ID: 8003922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory suppression and increased neuromodulation during actions disrupt memory encoding of unpredictable self-initiated stimuli.
    Paraskevoudi N; SanMiguel I
    Psychophysiology; 2023 Jan; 60(1):e14156. PubMed ID: 35918912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulus-focused attention speeds up auditory processing.
    Folyi T; Fehér B; Horváth J
    Int J Psychophysiol; 2012 May; 84(2):155-63. PubMed ID: 22326595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.
    Behroozmand R; Sangtian S; Korzyukov O; Larson CR
    Brain Res; 2016 Apr; 1636():1-12. PubMed ID: 26835556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.
    Ross B; Barat M; Fujioka T
    J Neurosci; 2017 Jun; 37(24):5948-5959. PubMed ID: 28539421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study.
    Kauramäki J; Jääskeläinen IP; Hänninen JL; Auranen T; Nummenmaa A; Lampinen J; Sams M
    PLoS One; 2012; 7(10):e46872. PubMed ID: 23071654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuation of auditory ERPs to action-sound coincidences is not explained by voluntary allocation of attention.
    Horváth J
    Psychophysiology; 2013 Mar; 50(3):266-73. PubMed ID: 23316925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.
    Tervaniemi M; Kruck S; De Baene W; Schröger E; Alter K; Friederici AD
    Eur J Neurosci; 2009 Oct; 30(8):1636-42. PubMed ID: 19821835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action-sound coincidence-related attenuation of auditory ERPs is not modulated by affordance compatibility.
    Horváth J
    Biol Psychol; 2013 Apr; 93(1):81-7. PubMed ID: 23298717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous storage of two complex temporal sound patterns in auditory sensory memory.
    Brattico E; Winkler I; Näätänen R; Paavilainen P; Tervaniemi M
    Neuroreport; 2002 Oct; 13(14):1747-51. PubMed ID: 12395116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hallucination Proneness Alters Sensory Feedback Processing in Self-voice Production.
    Duggirala SX; Schwartze M; Goller LK; Linden DEJ; Pinheiro AP; Kotz SA
    Schizophr Bull; 2024 Aug; 50(5):1147-1158. PubMed ID: 38824450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.