These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23281872)

  • 1. A flexible ancestral genome reconstruction method based on gapped adjacencies.
    Gagnon Y; Blanchette M; El-Mabrouk N
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S4. PubMed ID: 23281872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancestral gene synteny reconstruction improves extant species scaffolding.
    Anselmetti Y; Berry V; Chauve C; Chateau A; Tannier E; Bérard S
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S11. PubMed ID: 26450761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SCJ Small Parsimony Problem for Weighted Gene Adjacencies.
    Luhmann N; Lafond M; Thevenin A; Ouangraoua A; Wittler R; Chauve C
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1364-1373. PubMed ID: 28166504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies.
    Drillon G; Champeimont R; Oteri F; Fischer G; Carbone A
    Mol Biol Evol; 2020 Sep; 37(9):2747-2762. PubMed ID: 32384156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ancestral Flowering Plant Chromosomes and Gene Orders Based on Generalized Adjacencies and Chromosomal Gene Co-Occurrences.
    Xu Q; Jin L; Zhang Y; Zhang X; Zheng C; Leebens-Mack JH; Sankoff D
    J Comput Biol; 2021 Nov; 28(11):1156-1179. PubMed ID: 34783601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProCARs: Progressive Reconstruction of Ancestral Gene Orders.
    Perrin A; Varré JS; Blanquart S; Ouangraoua A
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S6. PubMed ID: 26040958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of gene neighborhoods within reconciled phylogenies.
    Bérard S; Gallien C; Boussau B; Szöllősi GJ; Daubin V; Tannier E
    Bioinformatics; 2012 Sep; 28(18):i382-i388. PubMed ID: 22962456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing ancestral gene orders with duplications guided by synteny level genome reconstruction.
    Rajaraman A; Ma J
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):414. PubMed ID: 28185565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembling contigs in draft genomes using reversals and block-interchanges.
    Li CL; Chen KT; Lu CL
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the architecture of the ancestral amniote genome.
    Ouangraoua A; Tannier E; Chauve C
    Bioinformatics; 2011 Oct; 27(19):2664-71. PubMed ID: 21846735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient
    Luhmann N; Doerr D; Chauve C
    Microb Genom; 2017 Sep; 3(9):e000123. PubMed ID: 29114402
    [No Abstract]   [Full Text] [Related]  

  • 13. Ancestral Genome Reconstruction on Whole Genome Level.
    Feng B; Zhou L; Tang J
    Curr Genomics; 2017 Aug; 18(4):306-315. PubMed ID: 29081686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes.
    Chauve C; Tannier E
    PLoS Comput Biol; 2008 Nov; 4(11):e1000234. PubMed ID: 19043541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of ancestral gene orders using probabilistic and gene encoding approaches.
    Yang N; Hu F; Zhou L; Tang J
    PLoS One; 2014; 9(10):e108796. PubMed ID: 25302942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure.
    Zuccolo A; Bowers JE; Estill JC; Xiong Z; Luo M; Sebastian A; Goicoechea JL; Collura K; Yu Y; Jiao Y; Duarte J; Tang H; Ayyampalayam S; Rounsley S; Kudrna D; Paterson AH; Pires JC; Chanderbali A; Soltis DE; Chamala S; Barbazuk B; Soltis PS; Albert VA; Ma H; Mandoli D; Banks J; Carlson JE; Tomkins J; dePamphilis CW; Wing RA; Leebens-Mack J
    Genome Biol; 2011; 12(5):R48. PubMed ID: 21619600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes.
    Jung S; Main D; Staton M; Cho I; Zhebentyayeva T; Arús P; Abbott A
    BMC Genomics; 2006 Apr; 7():81. PubMed ID: 16615871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms.
    Sinha AU; Meller J
    BMC Bioinformatics; 2007 Mar; 8():82. PubMed ID: 17343765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AGO, a Framework for the Reconstruction of Ancestral Syntenies and Gene Orders.
    Cribbie EP; Doerr D; Chauve C
    Methods Mol Biol; 2024; 2802():247-265. PubMed ID: 38819563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DUPCAR: reconstructing contiguous ancestral regions with duplications.
    Ma J; Ratan A; Raney BJ; Suh BB; Zhang L; Miller W; Haussler D
    J Comput Biol; 2008 Oct; 15(8):1007-27. PubMed ID: 18774902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.