These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23281873)

  • 21. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical phonon contribution to the thermal conductivity of a quantum paraelectric.
    Bhalla P; Das N
    J Phys Condens Matter; 2021 Jul; 33(34):. PubMed ID: 34098535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate.
    Luo Y; Wang J; Li Y; Wang J
    Sci Rep; 2016 Jul; 6():29801. PubMed ID: 27430670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning phonon transport spectrum for better thermoelectric materials.
    Hori T; Shiomi J
    Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS
    Lin C; Chen X; Zou X
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25547-25555. PubMed ID: 31273972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic sources of high thermal conductivity of CdSiP
    Wei L; Zhang Y; Lv X; Yang Y; Yu H; Hu Y; Zhang H; Wang X; Liu B; Li Q
    Phys Chem Chem Phys; 2018 Jan; 20(3):1568-1574. PubMed ID: 29260168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.
    Neogi S; Reparaz JS; Pereira LF; Graczykowski B; Wagner MR; Sledzinska M; Shchepetov A; Prunnila M; Ahopelto J; Sotomayor-Torres CM; Donadio D
    ACS Nano; 2015 Apr; 9(4):3820-8. PubMed ID: 25827287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Dynamics, Phonon Spectra and Thermal Transport in the Silicon Clathrates.
    Wei B; Flitcroft JM; Skelton JM
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal transport by electrons and phonons in PdTe
    Li S; Zhang X; Bao H
    Phys Chem Chem Phys; 2021 Mar; 23(10):5956-5962. PubMed ID: 33666601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
    Mu X; Wang L; Yang X; Zhang P; To AC; Luo T
    Sci Rep; 2015 Nov; 5():16697. PubMed ID: 26568511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.