BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23282028)

  • 1. Reconstructing genome mixtures from partial adjacencies.
    Mahmoody A; Kahn CL; Raphael BJ
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S9. PubMed ID: 23282028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing cancer genomes from paired-end sequencing data.
    Oesper L; Ritz A; Aerni SJ; Drebin R; Raphael BJ
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S10. PubMed ID: 22537039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold filling under the breakpoint and related distances.
    Jiang H; Zheng C; Sankoff D; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1220-9. PubMed ID: 22529329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximating the DCJ distance of balanced genomes in linear time.
    Rubert DP; Feijão P; Braga MDV; Stoye J; Martinez FHV
    Algorithms Mol Biol; 2017; 12():3. PubMed ID: 28293275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open adjacencies and k-breaks: detecting simultaneous rearrangements in cancer genomes.
    Weinreb C; Oesper L; Raphael BJ
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S4. PubMed ID: 25572114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorting Linear Genomes with Rearrangements and Indels.
    Braga MD; Stoye J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):500-6. PubMed ID: 26357261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.
    Feijão P; Meidanis J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):819-31. PubMed ID: 24334378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DCJ path formulation for genome transformations which include insertions, deletions, and duplications.
    Yancopoulos S; Friedberg R
    J Comput Biol; 2009 Oct; 16(10):1311-38. PubMed ID: 19803734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast ancestral gene order reconstruction of genomes with unequal gene content.
    Feijão P; Araujo E
    BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome rearrangement by the double cut and join operation.
    Friedberg R; Darling AE; Yancopoulos S
    Methods Mol Biol; 2008; 452():385-416. PubMed ID: 18566774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solution space of sorting by DCJ.
    Braga MD; Stoye J
    J Comput Biol; 2010 Sep; 17(9):1145-65. PubMed ID: 20874401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 2-approximation algorithm for the contig-based genomic scaffold filling problem.
    Jiang H; Qingge L; Zhu D; Zhu B
    J Bioinform Comput Biol; 2018 Dec; 16(6):1850022. PubMed ID: 30616473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of clone- and haplotype-specific cancer genome karyotypes from bulk tumor samples.
    Aganezov S; Raphael BJ
    Genome Res; 2020 Sep; 30(9):1274-1290. PubMed ID: 32887685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovering rearranged cancer chromosomes from karyotype graphs.
    Aganezov S; Zban I; Aksenov V; Alexeev N; Schatz MC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):641. PubMed ID: 31842730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing cancer karyotypes from short read data: the half empty and half full glass.
    Eitan R; Shamir R
    BMC Bioinformatics; 2017 Nov; 18(1):488. PubMed ID: 29141589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of perfect DCJ rearrangement scenarios with linear and circular chromosomes.
    Bérard S; Chateau A; Chauve C; Paul C; Tannier E
    J Comput Biol; 2009 Oct; 16(10):1287-309. PubMed ID: 19803733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative timing of mutations in a breast cancer genome.
    Newman S; Howarth KD; Greenman CD; Bignell GR; Tavaré S; Edwards PA
    PLoS One; 2013; 8(6):e64991. PubMed ID: 23762276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.