These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1111 related articles for article (PubMed ID: 23282074)
1. A guide to the design of electronic properties of graphene nanoribbons. Yazyev OV Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074 [TBL] [Abstract][Full Text] [Related]
2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
3. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141 [TBL] [Abstract][Full Text] [Related]
4. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. Shekhirev M; Zahl P; Sinitskii A ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655 [TBL] [Abstract][Full Text] [Related]
5. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078 [TBL] [Abstract][Full Text] [Related]
7. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Kou L; Tang C; Wehling T; Frauenheim T; Chen C Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363 [TBL] [Abstract][Full Text] [Related]
8. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons. Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503 [TBL] [Abstract][Full Text] [Related]
9. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. Sun L; Wei P; Wei J; Sanvito S; Hou S J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127 [TBL] [Abstract][Full Text] [Related]
14. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Narita A; Chen Z; Chen Q; Müllen K Chem Sci; 2019 Jan; 10(4):964-975. PubMed ID: 30774890 [TBL] [Abstract][Full Text] [Related]
15. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study. Kan EJ; Xiang HJ; Yang J; Hou JG J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370 [TBL] [Abstract][Full Text] [Related]
16. Electronic transport of recrystallized freestanding graphene nanoribbons. Qi ZJ; Daniels C; Hong SJ; Park YW; Meunier V; Drndić M; Johnson AT ACS Nano; 2015; 9(4):3510-20. PubMed ID: 25738404 [TBL] [Abstract][Full Text] [Related]
18. Graphene: powder, flakes, ribbons, and sheets. James DK; Tour JM Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286 [TBL] [Abstract][Full Text] [Related]
19. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies. Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375 [TBL] [Abstract][Full Text] [Related]
20. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Niu W; Ma J; Feng X Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]