BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23282095)

  • 1. The effect of resorption cavities on bone stiffness is site dependent.
    Vanderoost J; van Lenthe GH
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1483-91. PubMed ID: 23282095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid-induced changes in the geometry of osteoclast resorption cavities affect trabecular bone stiffness.
    Vanderoost J; Søe K; Merrild DM; Delaissé JM; van Lenthe GH
    Calcif Tissue Int; 2013 Mar; 92(3):240-50. PubMed ID: 23187898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques.
    Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P
    J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelationships between bone microarchitecture and strength in ovariectomized monkeys treated with teriparatide.
    Chen P; Jerome CP; Burr DB; Turner CH; Ma YL; Rana A; Sato M
    J Bone Miner Res; 2007 Jun; 22(6):841-8. PubMed ID: 17352652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone.
    Goff MG; Slyfield CR; Kummari SR; Tkachenko EV; Fischer SE; Yi YH; Jekir MG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jul; 51(1):28-37. PubMed ID: 22507299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of vertebral trabecular bone loss using voxel finite element analysis.
    Mc Donnell P; Harrison N; Liebschner MA; Mc Hugh PE
    J Biomech; 2009 Dec; 42(16):2789-96. PubMed ID: 19782987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.
    Vanderoost J; Jaecques SV; Van der Perre G; Boonen S; D'hooge J; Lauriks W; van Lenthe GH
    J Biomech; 2011 May; 44(8):1566-72. PubMed ID: 21414627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone.
    Tkachenko EV; Slyfield CR; Tomlinson RE; Daggett JR; Wilson DL; Hernandez CJ
    Bone; 2009 Sep; 45(3):487-92. PubMed ID: 19482097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in resorption cavity characteristics in human trabecular bone.
    Croucher PI; Garrahan NJ; Mellish RW; Compston JE
    Osteoporos Int; 1991 Sep; 1(4):257-61. PubMed ID: 1790413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the lengths of individual osteoid seams and resorption cavities in human iliac crest cancellous bone.
    Yamaguchi K; Croucher PI; Compston JE
    Bone Miner; 1993 Oct; 23(1):27-33. PubMed ID: 8274877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanical interaction of the trabecular core with an external shell using rapid prototype and finite element models.
    Mc Donnell P; Harrison N; Lohfeld S; Kennedy O; Zhang Y; Mc Hugh PE
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):63-76. PubMed ID: 19878903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A patient-specific computer tomography-based finite element methodology to calculate the six dimensional stiffness matrix of human vertebral bodies.
    Chevalier Y; Zysset PK
    J Biomech Eng; 2012 May; 134(5):051006. PubMed ID: 22757494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of simulated resorption cavities in cancellous bone across a wide range of bone volume fractions.
    Easley SK; Chang MT; Shindich D; Hernandez CJ; Keaveny TM
    J Bone Miner Res; 2012 Sep; 27(9):1927-35. PubMed ID: 22576976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for interrupted bone resorption in human iliac cancellous bone.
    Croucher PI; Gilks WR; Compston JE
    J Bone Miner Res; 1995 Oct; 10(10):1537-43. PubMed ID: 8686510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences of human trabecular bone microstructure in aging are site-dependent.
    Eckstein F; Matsuura M; Kuhn V; Priemel M; Müller R; Link TM; Lochmüller EM
    J Bone Miner Res; 2007 Jun; 22(6):817-24. PubMed ID: 17352643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus.
    Amling M; Herden S; Pösl M; Hahn M; Ritzel H; Delling G
    J Bone Miner Res; 1996 Jan; 11(1):36-45. PubMed ID: 8770695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.