These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23282239)

  • 1. Signaling network prediction by the Ontology Fingerprint enhanced Bayesian network.
    Qin T; Tsoi LC; Sims KJ; Lu X; Zheng WJ
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S3. PubMed ID: 23282239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models.
    Pei B; Shin DG
    J Comput Biol; 2012 Dec; 19(12):1324-34. PubMed ID: 23210479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.
    Narimani Z; Beigy H; Ahmad A; Masoudi-Nejad A; Fröhlich H
    PLoS One; 2017; 12(2):e0171240. PubMed ID: 28166542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian analysis of signaling networks governing embryonic stem cell fate decisions.
    Woolf PJ; Prudhomme W; Daheron L; Daley GQ; Lauffenburger DA
    Bioinformatics; 2005 Mar; 21(6):741-53. PubMed ID: 15479714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Computation Methods for Inferring Regulatory Network Models Using Biomedical Data.
    Tian T
    Adv Exp Med Biol; 2016; 939():289-307. PubMed ID: 27807752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.
    Fu C; Deng S; Jin G; Wang X; Yu ZG
    BMC Syst Biol; 2017 Sep; 11(Suppl 4):81. PubMed ID: 28950903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data.
    Liu H; Zhang F; Mishra SK; Zhou S; Zheng J
    Sci Rep; 2016 Oct; 6():35652. PubMed ID: 27774993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Boolean approach to linear prediction for signaling network modeling.
    Eduati F; Corradin A; Di Camillo B; Toffolo G
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Markov Random Field analysis for protein function prediction based on network data.
    Kourmpetis YA; van Dijk AD; Bink MC; van Ham RC; ter Braak CJ
    PLoS One; 2010 Feb; 5(2):e9293. PubMed ID: 20195360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying biological network structure, predicting network behavior, and classifying network state with High Dimensional Model Representation (HDMR).
    Miller MA; Feng XJ; Li G; Rabitz HA
    PLoS One; 2012; 7(6):e37664. PubMed ID: 22723838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention.
    Chang R; Shoemaker R; Wang W
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1170-82. PubMed ID: 21282866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks.
    Husmeier D
    Bioinformatics; 2003 Nov; 19(17):2271-82. PubMed ID: 14630656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining microarrays and biological knowledge for estimating gene networks via bayesian networks.
    Imoto S; Higuchi T; Goto T; Tashiro K; Kuhara S; Miyano S
    J Bioinform Comput Biol; 2004 Mar; 2(1):77-98. PubMed ID: 15272434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian Active Learning Experimental Design for Inferring Signaling Networks.
    Ness RO; Sachs K; Mallick P; Vitek O
    J Comput Biol; 2018 Jul; 25(7):709-725. PubMed ID: 29927613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling signal transduction from protein phosphorylation to gene expression.
    Cai C; Chen L; Jiang X; Lu X
    Cancer Inform; 2014; 13(Suppl 1):59-67. PubMed ID: 25392684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge.
    Menéndez P; Kourmpetis YA; ter Braak CJ; van Eeuwijk FA
    PLoS One; 2010 Dec; 5(12):e14147. PubMed ID: 21188141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.
    Morris MK; Saez-Rodriguez J; Clarke DC; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2011 Mar; 7(3):e1001099. PubMed ID: 21408212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.