BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2328231)

  • 21. A relationship between heme binding and protein stability in cytochrome b5.
    Mukhopadhyay K; Lecomte JT
    Biochemistry; 2004 Sep; 43(38):12227-36. PubMed ID: 15379561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and thermodynamic encoding in the sequence of rat microsomal cytochrome b(5).
    Lecomte JT; Mukhopadhyay K; Pond MP
    Biopolymers; 2008 May; 89(5):428-42. PubMed ID: 18041061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilizing roles of residual structure in the empty heme binding pockets and unfolded states of microsomal and mitochondrial apocytochrome b5.
    Cowley AB; Rivera M; Benson DR
    Protein Sci; 2004 Sep; 13(9):2316-29. PubMed ID: 15295112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One- and two-dimensional nuclear Overhauser effect studies of the electronic/molecular structure of the heme cavity of ferricytochrome b5.
    McLachlan SJ; La Mar GN; Lee KB
    Biochim Biophys Acta; 1988 Dec; 957(3):430-45. PubMed ID: 3196721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural propensities in the heme binding region of apocytochrome b5. II. Heme conjugates.
    Davis RB; Lecomte JT
    Biopolymers; 2008; 90(4):556-66. PubMed ID: 18398854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure of oxidized rat microsomal cytochrome b5 in the presence of 2 M guanidinium chloride: monitoring the early steps in protein unfolding.
    Arnesano F; Banci L; Bertini I; Koulougliotis D
    Biochemistry; 1998 Dec; 37(48):17082-92. PubMed ID: 9836603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectroscopy study.
    Lecomte JT; Cocco MJ
    Biochemistry; 1990 Dec; 29(50):11057-67. PubMed ID: 2176891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The solution structure of oxidized rat microsomal cytochrome b5.
    Arnesano F; Banci L; Bertini I; Felli IC
    Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential proton NMR resonance assignments, circular dichroism, and structural properties of a 50-residue substrate-binding peptide from DNA polymerase I.
    Mullen GP; Vaughn JB; Mildvan AS
    Arch Biochem Biophys; 1993 Feb; 301(1):174-83. PubMed ID: 8442659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward engineering the stability and hemin-binding properties of microsomal cytochromes b5 into rat outer mitochondrial membrane cytochrome b5: examining the influence of residues 25 and 71.
    Cowley AB; Altuve A; Kuchment O; Terzyan S; Zhang X; Rivera M; Benson DR
    Biochemistry; 2002 Oct; 41(39):11566-81. PubMed ID: 12269800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate.
    de Jongh HH; Killian JA; de Kruijff B
    Biochemistry; 1992 Feb; 31(6):1636-43. PubMed ID: 1310614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5.
    Rivera M; Barillas-Mury C; Christensen KA; Little JW; Wells MA; Walker FA
    Biochemistry; 1992 Dec; 31(48):12233-40. PubMed ID: 1333795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of cytochromes b5 from insects and vertebrates.
    Wang L; Cowley AB; Terzyan S; Zhang X; Benson DR
    Proteins; 2007 May; 67(2):293-304. PubMed ID: 17299762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the solution structures and mobility of oxidised and reduced cytochrome b5 by 2D NMR spectroscopy.
    Veitch NC; Concar DW; Williams RJ; Whitford D
    FEBS Lett; 1988 Sep; 238(1):49-55. PubMed ID: 3169253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wild-type sperm whale apomyoglobin.
    Lecomte JT; Kao YH; Cocco MJ
    Proteins; 1996 Jul; 25(3):267-85. PubMed ID: 8844864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic analysis of the interaction of cytochrome c with native and dimethyl ester heme substituted cytochrome b5.
    Mauk MR; Mauk AG; Weber PC; Matthew JB
    Biochemistry; 1986 Nov; 25(22):7085-91. PubMed ID: 3026446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural study of the heme crevice in cytochrome b5 based on individual assignments of the 1H-NMR lines of the heme group and selected amino acid residues.
    Keller RM; Wüthrich K
    Biochim Biophys Acta; 1980 Feb; 621(2):204-17. PubMed ID: 7353039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562.
    Feng YQ; Sligar SG
    Biochemistry; 1991 Oct; 30(42):10150-5. PubMed ID: 1931945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the heme propionates in the interaction of heme with apomyoglobin and apocytochrome b5.
    Hunter CL; Lloyd E; Eltis LD; Rafferty SP; Lee H; Smith M; Mauk AG
    Biochemistry; 1997 Feb; 36(5):1010-7. PubMed ID: 9033390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.