These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23282583)
1. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Gil E; Llorens J; Llop J; Fàbregas X; Gallart M Sensors (Basel); 2013 Jan; 13(1):516-34. PubMed ID: 23282583 [TBL] [Abstract][Full Text] [Related]
2. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
3. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
4. Determination of spray drift and buffer zones in 3D crops using the ISO standard and new LiDAR methodologies. Torrent X; Gregorio E; Rosell-Polo JR; Arnó J; Peris M; van de Zande JC; Planas S Sci Total Environ; 2020 Apr; 714():136666. PubMed ID: 31986387 [TBL] [Abstract][Full Text] [Related]
5. Toward a remote sensing method based on commercial LiDAR sensors for the measurement of spray drift and potential drift reduction. Li L; Zhang R; Chen L; Hewitt AJ; He X; Ding C; Tang Q; Liu B Sci Total Environ; 2024 Mar; 918():170819. PubMed ID: 38340824 [TBL] [Abstract][Full Text] [Related]
6. Spray drift evaluation with point clouds data of 3D LiDAR as a potential alternative to the sampling method. Li L; Zhang R; Chen L; Liu B; Zhang L; Tang Q; Ding C; Zhang Z; Hewitt AJ Front Plant Sci; 2022; 13():939733. PubMed ID: 35923876 [TBL] [Abstract][Full Text] [Related]
7. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Dai S; Ou M; Du W; Yang X; Dong X; Jiang L; Zhang T; Ding S; Jia W Front Plant Sci; 2023; 14():1184244. PubMed ID: 37223814 [TBL] [Abstract][Full Text] [Related]
8. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique. Gregorio E; Torrent X; Planas S; Rosell-Polo JR Sci Total Environ; 2019 Oct; 687():967-977. PubMed ID: 31412500 [TBL] [Abstract][Full Text] [Related]
9. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605 [TBL] [Abstract][Full Text] [Related]
10. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
11. The effect of the air blast sprayer speed on the chemical distribution in vineyard. Celen IH; Arin S; Durgut MR Pak J Biol Sci; 2008 Jun; 11(11):1472-6. PubMed ID: 18817249 [TBL] [Abstract][Full Text] [Related]
12. Droplets deposition pattern from a prototype of a fixed spraying system in a sloping vineyard. Otto S; Loddo D; Schmid A; Roschatt C; Venturelli M; Innerebner G Sci Total Environ; 2018 Oct; 639():92-99. PubMed ID: 29778687 [TBL] [Abstract][Full Text] [Related]
13. The effect of air support on droplet characteristics and spray drift. Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426 [TBL] [Abstract][Full Text] [Related]
14. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
15. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
17. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses. Grella M; Miranda-Fuentes A; Marucco P; Balsari P Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438 [TBL] [Abstract][Full Text] [Related]
18. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
19. Eye-safe lidar system for pesticide spray drift measurement. Gregorio E; Rocadenbosch F; Sanz R; Rosell-Polo JR Sensors (Basel); 2015 Feb; 15(2):3650-70. PubMed ID: 25658395 [TBL] [Abstract][Full Text] [Related]
20. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Llorens J; Gil E; Llop J; Escolà A Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]