These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2328279)

  • 1. Subunit hybridization studies of partially ligated cyanomethemoglobins using a cryogenic method. Evidence for three allosteric states.
    Perrella M; Benazzi L; Shea MA; Ackers GK
    Biophys Chem; 1990 Jan; 35(1):97-103. PubMed ID: 2328279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure.
    Ackers GK
    Biophys Chem; 1990 Aug; 37(1-3):371-82. PubMed ID: 2285798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching.
    Daugherty MA; Shea MA; Johnson JA; LiCata VJ; Turner GJ; Ackers GK
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1110-4. PubMed ID: 1996311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric interpretation of the measurement of cooperative free energy in cyanomethemoglobin.
    Ferrone FA
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6412-4. PubMed ID: 3462703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative free energies for nested allosteric models as applied to human hemoglobin.
    Gill SJ; Robert CH; Coletta M; Di Cera E; Brunori M
    Biophys J; 1986 Oct; 50(4):747-52. PubMed ID: 3779009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What the intermediate compounds in ligand binding to hemoglobin tell about the mechanism of cooperativity.
    Perrella M; Colosimo A; Benazzi L; Ripamonti M; Rossi-Bernardi L
    Biophys Chem; 1990 Aug; 37(1-3):211-23. PubMed ID: 2285782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative oxygen binding, subunit assembly, and sulfhydryl reaction kinetics of the eight cyanomet intermediate ligation states of human hemoglobin.
    Doyle ML; Ackers GK
    Biochemistry; 1992 Nov; 31(45):11182-95. PubMed ID: 1445857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpic and entropic components of cooperativity for the partially ligated intermediates of hemoglobin support a "symmetry rule" mechanism.
    Huang Y; Ackers GK
    Biochemistry; 1995 May; 34(19):6316-27. PubMed ID: 7756259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin.
    Smith FR; Ackers GK
    Proc Natl Acad Sci U S A; 1985 Aug; 82(16):5347-51. PubMed ID: 3860865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-site modifications of half-ligated hemoglobin reveal autonomous dimer cooperativity within a quaternary T tetramer.
    LiCata VJ; Dalessio PM; Ackers GK
    Proteins; 1993 Nov; 17(3):279-96. PubMed ID: 8272426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary and quaternary chloride effects of the partially ligated (CN-met) hemoglobin intermediates.
    Huang Y; Koestner ML; Ackers GK
    Biophys Chem; 1997 Feb; 64(1-3):157-73. PubMed ID: 9127944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
    Straume M; Johnson ML
    Biochemistry; 1988 Feb; 27(4):1302-10. PubMed ID: 3365388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-state combinatorial switching in hemoglobin tetramers: comparison between functional energetics and molecular structures.
    Smith FR; Gingrich D; Hoffman BM; Ackers GK
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7089-93. PubMed ID: 3478682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotropic effects of chloride on the ligation microstates of hemoglobin at constant water activity.
    Huang Y; Koestner ML; Ackers GK
    Biophys J; 1996 Oct; 71(4):2106-16. PubMed ID: 8889185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the order of free energy couplings between ligand binding and subunit assembly in human hemoglobin.
    Johnson ML
    Biochemistry; 1986 Feb; 25(4):791-7. PubMed ID: 3964643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental resolution of cooperative free energies for the ten ligation species of cobalt(II)/iron(II)-CO hemoglobin.
    Speros PC; LiCata VJ; Yonetani T; Ackers GK
    Biochemistry; 1991 Jul; 30(29):7254-62. PubMed ID: 1854735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of the molecular mechanism of cooperativity in human hemoglobin cannot be limited to a first-order free energy coupling concept.
    Johnson ML
    Biochemistry; 1988 Jan; 27(2):833-7. PubMed ID: 3349067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic stability of the asymmetric doubly-ligated hemoglobin tetramer (alpha+CNbeta+CN)(alphabeta): methodological and mechanistic issues.
    Ackers GK; Perrella M; Holt JM; Denisov I; Huang Y
    Biochemistry; 1997 Sep; 36(36):10822-9. PubMed ID: 9312272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen binding and subunit interaction of hemoglobin in relation to the two-state model.
    Gibson QH; Edelstein SJ
    J Biol Chem; 1987 Jan; 262(2):516-9. PubMed ID: 3804994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bohr effects of the partially-ligated (CN-met) intermediates of hemoglobin as probed by quaternary assembly.
    Daugherty MA; Shea MA; Ackers GK
    Biochemistry; 1994 Aug; 33(34):10345-57. PubMed ID: 8068671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.