These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23282842)

  • 1. Generation of high-purity entangled photon pair in a short highly nonlinear fiber.
    Sua YM; Malowicki J; Hirano M; Lee KF
    Opt Lett; 2013 Jan; 38(1):73-5. PubMed ID: 23282842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber.
    Lee KF; Chen J; Liang C; Li X; Voss PL; Kumar P
    Opt Lett; 2006 Jun; 31(12):1905-7. PubMed ID: 16729110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct generation of polarization-entangled photon pairs in a poled fiber.
    Zhu EY; Tang Z; Qian L; Helt LG; Liscidini M; Sipe JE; Corbari C; Canagasabey A; Ibsen M; Kazansky PG
    Phys Rev Lett; 2012 May; 108(21):213902. PubMed ID: 23003253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.
    Honjo T; Takesue H; Kamada H; Nishida Y; Tadanaga O; Asobe M; Inoue K
    Opt Express; 2007 Oct; 15(21):13957-64. PubMed ID: 19550669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of high-purity entangled photon pairs using silicon wire waveguide.
    Harada K; Takesue H; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Tokura Y; Itabashi S
    Opt Express; 2008 Dec; 16(25):20368-73. PubMed ID: 19065174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide.
    Arahira S; Namekata N; Kishimoto T; Yaegashi H; Inoue S
    Opt Express; 2011 Aug; 19(17):16032-43. PubMed ID: 21934967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.
    Xiong C; Monat C; Clark AS; Grillet C; Marshall GD; Steel MJ; Li J; O'Faolain L; Krauss TF; Rarity JG; Eggleton BJ
    Opt Lett; 2011 Sep; 36(17):3413-5. PubMed ID: 21886228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications.
    Liang C; Lee KF; Levin T; Chen J; Kumar P
    Opt Express; 2006 Jul; 14(15):6936-41. PubMed ID: 19516877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-based telecom-band degenerate-frequency source of entangled photon pairs.
    Chen J; Lee KF; Liang C; Kumar P
    Opt Lett; 2006 Sep; 31(18):2798-800. PubMed ID: 16936896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band.
    Li X; Voss PL; Sharping JE; Kumar P
    Phys Rev Lett; 2005 Feb; 94(5):053601. PubMed ID: 15783637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of 1.5 μm discrete frequency-entangled two-photon state in polarization-maintaining fibers.
    Zhou Q; Zhang W; Yuan C; Huang Y; Peng J
    Opt Lett; 2014 Apr; 39(7):2109-12. PubMed ID: 24686687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of degenerate polarization entangled photon pairs in the telecom-band from a pump enhanced parametric downconversion process.
    Thomas PJ; Chunnilall CJ; Stothard DJ; Walsh DA; Dunn MH
    Opt Express; 2010 Dec; 18(25):26600-12. PubMed ID: 21165009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence.
    Zhou Q; Zhang W; Wang P; Huang Y; Peng J
    Opt Lett; 2012 May; 37(10):1679-81. PubMed ID: 22627535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber.
    Takesue H; Inoue K
    Opt Express; 2005 Oct; 13(20):7832-9. PubMed ID: 19498811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise performance comparison of 1.5 microm correlated photon pair generation in different fibers.
    Zhou Q; Zhang W; Cheng JR; Huang YD; Peng JD
    Opt Express; 2010 Aug; 18(16):17114-23. PubMed ID: 20721100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-distance distribution of time-bin entanglement generated in a cooled fiber.
    Takesue H
    Opt Express; 2006 Apr; 14(8):3453-60. PubMed ID: 19516490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement distribution over 300 km of fiber.
    Inagaki T; Matsuda N; Tadanaga O; Asobe M; Takesue H
    Opt Express; 2013 Oct; 21(20):23241-9. PubMed ID: 24104238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive optical switching of photon pairs using a spontaneous parametric fiber loop.
    Zhao N; Yang L; Li X
    Opt Lett; 2012 Apr; 37(7):1220-2. PubMed ID: 22466201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors.
    Liang C; Lee KF; Medic M; Kumar P; Hadfield RH; Nam SW
    Opt Express; 2007 Feb; 15(3):1322-7. PubMed ID: 19532362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1.5-μm band polarization entangled photon-pair source with variable Bell states.
    Arahira S; Kishimoto T; Murai H
    Opt Express; 2012 Apr; 20(9):9862-75. PubMed ID: 22535079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.