These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23282843)

  • 1. Solution of pseudoscopic problem in integral imaging for real-time processing.
    Jung JH; Kim J; Lee B
    Opt Lett; 2013 Jan; 38(1):76-8. PubMed ID: 23282843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC).
    Navarro H; Martínez-Cuenca R; Saavedra G; Martínez-Corral M; Javidi B
    Opt Express; 2010 Dec; 18(25):25573-83. PubMed ID: 21164903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthoscopic real image reconstruction in integral imaging by rotating an elemental image based on the reference point of object space.
    Jang JY; Cho M
    Appl Opt; 2015 Jun; 54(18):5877-81. PubMed ID: 26193043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements.
    Yeom J; Hong K; Jeong Y; Jang C; Lee B
    Opt Express; 2014 Jun; 22(11):13659-70. PubMed ID: 24921560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthoscopic elemental image synthesis for 3D light field display using lens design software and real-world captured neural radiance field.
    Rabia S; Allain G; Tremblay R; Thibault S
    Opt Express; 2024 Feb; 32(5):7800-7815. PubMed ID: 38439452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of real, orthoscopic integral images by smart pixel mapping.
    Martinez-Corral M; Javidi B; Martínez-Cuenca R; Saavedra G
    Opt Express; 2005 Nov; 13(23):9175-80. PubMed ID: 19503116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus.
    Martínez-Corral M; Dorado A; Navarro H; Saavedra G; Javidi B
    Appl Opt; 2014 Aug; 53(22):E19-25. PubMed ID: 25090349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time depth controllable integral imaging pickup and reconstruction method with a light field camera.
    Jeong Y; Kim J; Yeom J; Lee CK; Lee B
    Appl Opt; 2015 Dec; 54(35):10333-41. PubMed ID: 26836855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microlens arrays for integral imaging system.
    Arai J; Kawai H; Okano F
    Appl Opt; 2006 Dec; 45(36):9066-78. PubMed ID: 17151745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real object pickup method of integral imaging using offset lens array.
    Yim J; Choi KH; Min SW
    Appl Opt; 2017 May; 56(13):F167-F172. PubMed ID: 28463313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study for pseudoscopic problem in integral imaging using negative refractive index materials.
    Zhang J; Wang X; Chen Y; Zhang Q; Yu S; Yuan Y; Guo B
    Opt Express; 2014 Aug; 22(17):20757-69. PubMed ID: 25321279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High speed image space parallel processing for computer-generated integral imaging system.
    Kwon KC; Park C; Erdenebat MU; Jeong JS; Choi JH; Kim N; Park JH; Lim YT; Yoo KH
    Opt Express; 2012 Jan; 20(2):732-40. PubMed ID: 22274418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional projection integral imaging using micro-convex-mirror arrays.
    Jang JS; Javidi B
    Opt Express; 2004 Mar; 12(6):1077-83. PubMed ID: 19474924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and inversion of pseudoscopic images.
    Burckhardt CB; Collier RJ; Doherty ET
    Appl Opt; 1968 Apr; 7(4):627-31. PubMed ID: 20068650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear mapping method for the generation of an elemental image array in a photorealistic pseudoscopic free 3D display.
    Wen J; Yan X; Jiang X; Yan Z; Wang Y; Wang J
    Appl Opt; 2018 Aug; 57(22):6375-6382. PubMed ID: 30117866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction.
    Xing S; Sang X; Yu X; Duo C; Pang B; Gao X; Yang S; Guan Y; Yan B; Yuan J; Wang K
    Opt Express; 2017 Jan; 25(1):330-338. PubMed ID: 28085827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time capturing and 3D visualization method based on integral imaging.
    Kim J; Jung JH; Jang C; Lee B
    Opt Express; 2013 Aug; 21(16):18742-53. PubMed ID: 23938790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viewing-Angle-Enhanced and Dual-View Compatible Integral Imaging 3D Display Based on a Dual Pinhole Array.
    Deng H; Lv G; Deng H; Liu Z
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging.
    Jung JH; Hong K; Park G; Chung I; Park JH; Lee B
    Opt Express; 2010 Dec; 18(25):26373-87. PubMed ID: 21164988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.