These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 2328290)
61. Structure-activity relationships of cyclic peptide-based chemokine receptor CXCR4 antagonists: disclosing the importance of side-chain and backbone functionalities. Ueda S; Oishi S; Wang ZX; Araki T; Tamamura H; Cluzeau J; Ohno H; Kusano S; Nakashima H; Trent JO; Peiper SC; Fujii N J Med Chem; 2007 Jan; 50(2):192-8. PubMed ID: 17228861 [TBL] [Abstract][Full Text] [Related]
62. Cyclization of several linear penta- and heptapeptides with different metal ions studied by CD spectroscopy. Liu M; Tang YC; Fan KQ; Jiang X; Lai LH; Ye YH J Pept Res; 2005 Jan; 65(1):55-64. PubMed ID: 15686535 [TBL] [Abstract][Full Text] [Related]
63. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study. Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952 [TBL] [Abstract][Full Text] [Related]
64. Comparison of proline and N-methylnorleucine induced conformational equilibria in cyclic pentapeptides. Weisshoff H; Wieprecht T; Henklein P; Frömmel C; Antz C; Mügge C FEBS Lett; 1996 Jun; 387(2-3):201-7. PubMed ID: 8674550 [TBL] [Abstract][Full Text] [Related]
65. Studies on hydrogen bonds. Part V--Hydrogen bonding in energy minimization studies of peptides. Paul PK; Ramakrishnan C J Biomol Struct Dyn; 1985 Feb; 2(5):879-98. PubMed ID: 3916936 [TBL] [Abstract][Full Text] [Related]
66. Sequence requirements for stabilization of a peptide reverse turn in water solution--proline is not essential for stability. Dyson HJ; Bolinger L; Feher VA; Osterhout JJ; Yao J; Wright PE Eur J Biochem; 1998 Jul; 255(2):462-71. PubMed ID: 9716389 [TBL] [Abstract][Full Text] [Related]
67. The utility of side-chain cyclization in determining the receptor-bound conformation of peptides: cyclic tripeptides and angiotensin II. Kataoka T; Beusen DD; Clark JD; Yodo M; Marshall GR Biopolymers; 1992 Nov; 32(11):1519-33. PubMed ID: 1333831 [TBL] [Abstract][Full Text] [Related]
68. Conformations of cyclo(L-orD-Phe-L-Pro-Aca) and cyclo(L-Pro-L- or D-Phe-Aca). Cyclized dipeptide models for specific types of beta-bends. Mizuno H; Lee S; Nakamura H; Kodera Y; Kato T; Go N; Izumiya N Biophys Chem; 1986 Nov; 25(1):73-90. PubMed ID: 3814747 [TBL] [Abstract][Full Text] [Related]
69. Characterization of Asx Turn Types and Their Connate Relationship with β-Turns. D'mello VC; Goldsztejn G; Rao Mundlapati V; Brenner V; Gloaguen E; Charnay-Pouget F; Aitken DJ; Mons M Chemistry; 2022 May; 28(25):e202104328. PubMed ID: 35175657 [TBL] [Abstract][Full Text] [Related]
70. Ten-membered cyclotripeptides. III. Synthesis and conformation of cyclo(-Me beta Ala-Phe-Pro-) and cyclo(-Me beta Ala-Phe-DPro-). Cerrini S; Gavuzzo E; Lucente G; Luisi G; Pinnen F; Radics L Int J Pept Protein Res; 1991 Oct; 38(4):289-97. PubMed ID: 1797704 [TBL] [Abstract][Full Text] [Related]
71. A new turn structure for the formation of beta-hairpins in peptides. Nowick JS; Brower JO J Am Chem Soc; 2003 Jan; 125(4):876-7. PubMed ID: 12537479 [TBL] [Abstract][Full Text] [Related]
72. Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred beta-turn conformers and implications for beta turns in proteins. Gierasch LM; Deber CM; Madison V; Niu CH; Blout ER Biochemistry; 1981 Aug; 20(16):4730-8. PubMed ID: 7295645 [No Abstract] [Full Text] [Related]
73. Free energy landscapes of peptides by enhanced conformational sampling. Nakajima N; Higo J; Kidera A; Nakamura H J Mol Biol; 2000 Feb; 296(1):197-216. PubMed ID: 10656827 [TBL] [Abstract][Full Text] [Related]
74. Designed beta-hairpin peptides with defined tight turn stereochemistry. Das C; Naganagowda GA; Karle IL; Balaram P Biopolymers; 2001 Mar; 58(3):335-46. PubMed ID: 11169393 [TBL] [Abstract][Full Text] [Related]
75. A reverse turn structure induced by a D,L-alpha-aminoxy acid dimer. Yang D; Qu J; Li W; Wang DP; Ren Y; Wu YD J Am Chem Soc; 2003 Nov; 125(47):14452-7. PubMed ID: 14624594 [TBL] [Abstract][Full Text] [Related]
76. Cyclic beta-tetra- and pentapeptides: synthesis through on-resin cyclization and conformational studies by X-ray, NMR and CD spectroscopy and theoretical calculations. Büttner F; Norgren AS; Zhang S; Prabpai S; Kongsaeree P; Arvidsson PI Chemistry; 2005 Oct; 11(21):6145-58. PubMed ID: 16052654 [TBL] [Abstract][Full Text] [Related]
77. Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven Monte Carlo and molecular dynamics methods. Liwo A; Tempczyk A; Ołdziej S; Shenderovich MD; Hruby VJ; Talluri S; Ciarkowski J; Kasprzykowski F; Lankiewicz L; Grzonka Z Biopolymers; 1996 Feb; 38(2):157-75. PubMed ID: 8589250 [TBL] [Abstract][Full Text] [Related]
78. Photomodulation of conformational states. IV. Integrin-binding RGD-peptides with (4-aminomethyl)phenylazobenzoic acid as backbone constituent. Milbradt AG; Löweneck M; Krupka SS; Reif M; Sinner EK; Moroder L; Renner C Biopolymers; 2005 Apr; 77(5):304-13. PubMed ID: 15637699 [TBL] [Abstract][Full Text] [Related]
79. Molecular mechanics investigation of the flexibility of some cyclic peptides. Romanowska K; Kopple KD Int J Pept Protein Res; 1987 Sep; 30(3):289-98. PubMed ID: 3692678 [TBL] [Abstract][Full Text] [Related]
80. Conformational preference for segetalins G and H, cyclic peptides with estrogen-like activity from seeds of Vaccaria segetalis. Morita H; Yun YS; Takeya K; Itokawa H Bioorg Med Chem; 1997 Nov; 5(11):2063-7. PubMed ID: 9416423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]