These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23283224)

  • 21. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings.
    Sundd P; Pospieszalska MK; Ley K
    Mol Immunol; 2013 Aug; 55(1):59-69. PubMed ID: 23141302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human neutrophil surface protrusion under a point load: location independence and viscoelasticity.
    Xu G; Shao JY
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1434-44. PubMed ID: 18815230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A modified micropipette aspiration technique and its application to tether formation from human neutrophils.
    Shao JY; Xu J
    J Biomech Eng; 2002 Aug; 124(4):388-96. PubMed ID: 12188205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics-based side view flow chamber reveals tether-to-sling transition in rolling neutrophils.
    Marki A; Gutierrez E; Mikulski Z; Groisman A; Ley K
    Sci Rep; 2016 Jun; 6():28870. PubMed ID: 27357741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical forces induced by the transendothelial migration of human neutrophils.
    Rabodzey A; Alcaide P; Luscinskas FW; Ladoux B
    Biophys J; 2008 Aug; 95(3):1428-38. PubMed ID: 18390614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Static and dynamic lengths of neutrophil microvilli.
    Shao JY; Ting-Beall HP; Hochmuth RM
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6797-802. PubMed ID: 9618492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanics of Neutrophil Tethers.
    Cugno A; Marki A; Ley K
    Life (Basel); 2021 May; 11(6):. PubMed ID: 34073130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin.
    Ramachandran V; Williams M; Yago T; Schmidtke DW; McEver RP
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13519-24. PubMed ID: 15353601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.
    Gonnermann C; Huang C; Becker SF; Stamov DR; Wedlich D; Kashef J; Franz CM
    Integr Biol (Camb); 2015 Mar; 7(3):356-63. PubMed ID: 25710133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of neutrophil rolling over stimulated endothelium in vitro.
    Goetz DJ; el-Sabban ME; Pauli BU; Hammer DA
    Biophys J; 1994 Jun; 66(6):2202-9. PubMed ID: 7521229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processivity and collectivity of biomolecular motors extracting membrane nanotubes.
    Fontenele Araujo F; Storm C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):010901. PubMed ID: 23005360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow.
    Ramachandran V; Yago T; Epperson TK; Kobzdej MM; Nollert MU; Cummings RD; Zhu C; McEver RP
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10166-71. PubMed ID: 11481445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deformation and flow of membrane into tethers extracted from neuronal growth cones.
    Hochmuth FM; Shao JY; Dai J; Sheetz MP
    Biophys J; 1996 Jan; 70(1):358-69. PubMed ID: 8770212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplay between membrane cholesterol and ethanol differentially regulates neutrophil tether mechanics and rolling dynamics.
    Furlow M; Diamond SL
    Biorheology; 2011; 48(1):49-64. PubMed ID: 21515936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. L-selectin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo.
    Von Andrian UH; Hansell P; Chambers JD; Berger EM; Torres Filho I; Butcher EC; Arfors KE
    Am J Physiol; 1992 Oct; 263(4 Pt 2):H1034-44. PubMed ID: 1384360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
    Borghi N; Brochard-Wyart F
    Biophys J; 2007 Aug; 93(4):1369-79. PubMed ID: 17526591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1.
    Heinrich V; Leung A; Evans E
    Biophys J; 2005 Mar; 88(3):2299-308. PubMed ID: 15653735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane tethers formed from blood cells with available area and determination of their adhesion energy.
    Hochmuth RM; Marcus WD
    Biophys J; 2002 Jun; 82(6):2964-9. PubMed ID: 12023219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of thermally driven surface undulations on tethers formed from bilayer membranes.
    Glassinger E; Raphael RM
    Biophys J; 2006 Jul; 91(2):619-25. PubMed ID: 16648163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electromechanical effects on tether formation from lipid membranes: a theoretical analysis.
    Glassinger E; Lee AC; Raphael RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041926. PubMed ID: 16383439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.