BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23283227)

  • 1. Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods.
    Fry CH; Salvage SC; Manazza A; Dupont E; Labeed FH; Hughes MP; Jabr RI
    Biophys J; 2012 Dec; 103(11):2287-94. PubMed ID: 23283227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium.
    Dhillon PS; Gray R; Kojodjojo P; Jabr R; Chowdhury R; Fry CH; Peters NS
    Circ Arrhythm Electrophysiol; 2013 Dec; 6(6):1208-14. PubMed ID: 24134868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic variations in interstitial and intracellular structure modulate the distribution of conduction delays and block in cardiac tissue with source-load mismatch.
    Hubbard ML; Henriquez CS
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v3-v9. PubMed ID: 23104912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisite interstitial stimulation for cardiac micro-impedance measurements.
    Pollard AE; Barr RC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1572-5. PubMed ID: 17946050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cell-to-cell electrical coupling associated with left ventricular hypertrophy.
    Cooklin M; Wallis WR; Sheridan DJ; Fry CH
    Circ Res; 1997 Jun; 80(6):765-71. PubMed ID: 9168778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between connexin expression and gap-junction resistivity in human atrial myocardium.
    Dhillon PS; Chowdhury RA; Patel PM; Jabr R; Momin AU; Vecht J; Gray R; Shipolini A; Fry CH; Peters NS
    Circ Arrhythm Electrophysiol; 2014 Apr; 7(2):321-9. PubMed ID: 24610741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional differences in rabbit atrial action potential properties: mechanisms, consequences and pharmacological implications.
    Aslanidi OV; Dewey RS; Morgan AR; Boyett MR; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():141-4. PubMed ID: 19162613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of the human atrial anatomy and electrophysiology.
    Dössel O; Krueger MW; Weber FM; Wilhelms M; Seemann G
    Med Biol Eng Comput; 2012 Aug; 50(8):773-99. PubMed ID: 22718317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrical resistivity of cytoplasm.
    Foster KR; Bidinger JM; Carpenter DO
    Biophys J; 1976 Sep; 16(9):991-1001. PubMed ID: 963211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.
    Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P
    Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning: correlation with local ST-segment potential and ventricular arrhythmias.
    Cinca J; Warren M; Carreño A; Tresànchez M; Armadans L; Gómez P; Soler-Soler J
    Circulation; 1997 Nov; 96(9):3079-86. PubMed ID: 9386178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis.
    Ivanova AD; Samoilova DV; Razumov AA; Kuzmin VS
    Pflugers Arch; 2019 Dec; 471(11-12):1493-1503. PubMed ID: 31654199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercellular coupling in frog heart muscle. Electrophysiological and morphological aspects.
    Haas HG; Meyer R; Einwächter HM; Stockem W
    Pflugers Arch; 1983 Dec; 399(4):321-35. PubMed ID: 6607456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models.
    Malherbe TK; Hanekom T; Hanekom JJ
    Hear Res; 2015 Sep; 327():126-35. PubMed ID: 26074305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential characterization in intact mouse heart: steady-state cycle length dependence and electrical restitution.
    Knollmann BC; Schober T; Petersen AO; Sirenko SG; Franz MR
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H614-21. PubMed ID: 16963611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conduction velocity and gap junction resistance in hypertrophied, hypoxic guinea-pig left ventricular myocardium.
    Cooklin M; Wallis WR; Sheridan DJ; Fry CH
    Exp Physiol; 1998 Nov; 83(6):763-70. PubMed ID: 9782186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance components in longitudinal direction in the guinea-pig taenia coli.
    Ohba M; Sakamoto Y; Tokuno H; Tomita T
    J Physiol; 1976 Apr; 256(3):527-40. PubMed ID: 1271291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes.
    Beauchamp P; Yamada KA; Baertschi AJ; Green K; Kanter EM; Saffitz JE; Kléber AG
    Circ Res; 2006 Nov; 99(11):1216-24. PubMed ID: 17053190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap junctions and propagation of the cardiac action potential.
    Bernstein SA; Morley GE
    Adv Cardiol; 2006; 42():71-85. PubMed ID: 16646585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.