These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23283236)

  • 1. Quantitative analysis of approaches to measure cooperative phosphate release in polymerized actin.
    Burnett MM; Carlsson AE
    Biophys J; 2012 Dec; 103(11):2369-78. PubMed ID: 23283236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin polymerization and depolymerization coupled to cooperative hydrolysis.
    Li X; Kierfeld J; Lipowsky R
    Phys Rev Lett; 2009 Jul; 103(4):048102. PubMed ID: 19659403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On phosphate release in actin filaments.
    Jégou A; Niedermayer T; Lipowsky R; Carlier MF; Romet-Lemonne G
    Biophys J; 2013 Jun; 104(12):2778-9. PubMed ID: 23790388
    [No Abstract]   [Full Text] [Related]  

  • 4. Response to "on phosphate release in actin filaments".
    Burnett MM; Carlsson AE
    Biophys J; 2013 Jun; 104(12):2780. PubMed ID: 23790389
    [No Abstract]   [Full Text] [Related]  

  • 5. Actin polymerization overshoots and ATP hydrolysis as assayed by pyrene fluorescence.
    Brooks FJ; Carlsson AE
    Biophys J; 2008 Aug; 95(3):1050-62. PubMed ID: 18390612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis.
    Orlova A; Egelman EH
    J Mol Biol; 1992 Oct; 227(4):1043-53. PubMed ID: 1433285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of actin monomers into long filaments: Brownian dynamics simulations.
    Guo K; Shillcock J; Lipowsky R
    J Chem Phys; 2009 Jul; 131(1):015102. PubMed ID: 19586123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.
    Jégou A; Niedermayer T; Orbán J; Didry D; Lipowsky R; Carlier MF; Romet-Lemonne G
    PLoS Biol; 2011 Sep; 9(9):e1001161. PubMed ID: 21980262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of the actin filament.
    Pfaendtner J; Lyman E; Pollard TD; Voth GA
    J Mol Biol; 2010 Feb; 396(2):252-63. PubMed ID: 19931282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide effects on the structure and dynamics of actin.
    Zheng X; Diraviyam K; Sept D
    Biophys J; 2007 Aug; 93(4):1277-83. PubMed ID: 17526584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics and dynamics of constrained actin filament bundling.
    Yang L; Sept D; Carlsson AE
    Biophys J; 2006 Jun; 90(12):4295-304. PubMed ID: 16565053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release.
    Murakami K; Yasunaga T; Noguchi TQ; Gomibuchi Y; Ngo KX; Uyeda TQ; Wakabayashi T
    Cell; 2010 Oct; 143(2):275-87. PubMed ID: 20946985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy.
    Fujiwara I; Vavylonis D; Pollard TD
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8827-32. PubMed ID: 17517656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New aspects of the spontaneous polymerization of actin in the presence of salts.
    Galińska-Rakoczy A; Wawro B; Strzelecka-Gołaszewska H
    J Mol Biol; 2009 Apr; 387(4):869-82. PubMed ID: 19340945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations.
    Chu JW; Voth GA
    Biophys J; 2006 Mar; 90(5):1572-82. PubMed ID: 16361345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin structure and function.
    Dominguez R; Holmes KC
    Annu Rev Biophys; 2011; 40():169-86. PubMed ID: 21314430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
    Plastino J; Lelidis I; Prost J; Sykes C
    Eur Biophys J; 2004 Jul; 33(4):310-20. PubMed ID: 14663631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin polymerization under pressure: a theoretical study.
    Artyomov MN; Freed KF
    J Chem Phys; 2007 Jan; 126(2):024908. PubMed ID: 17228974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confining potential when a biopolymer filament reptates.
    Wang B; Guan J; Anthony SM; Bae SC; Schweizer KS; Granick S
    Phys Rev Lett; 2010 Mar; 104(11):118301. PubMed ID: 20366503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins.
    Khaitlina S; Hinssen H
    Arch Biochem Biophys; 2008 Sep; 477(2):279-84. PubMed ID: 18619940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.