BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 23284076)

  • 1. The CFTR ion channel: gating, regulation, and anion permeation.
    Hwang TC; Kirk KL
    Cold Spring Harb Perspect Med; 2013 Jan; 3(1):a009498. PubMed ID: 23284076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter.
    Kirk KL; Wang W
    J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ABC protein turned chloride channel whose failure causes cystic fibrosis.
    Gadsby DC; Vergani P; Csanády L
    Nature; 2006 Mar; 440(7083):477-83. PubMed ID: 16554808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL.
    Csanády L; Vergani P; Gadsby DC
    Physiol Rev; 2019 Jan; 99(1):707-738. PubMed ID: 30516439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.
    Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO
    J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
    Wei S; Roessler BC; Icyuz M; Chauvet S; Tao B; Hartman JL; Kirk KL
    FASEB J; 2016 Mar; 30(3):1247-62. PubMed ID: 26606940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters.
    Cui G; Hong J; Chung-Davidson YW; Infield D; Xu X; Li J; Simhaev L; Khazanov N; Stauffer B; Imhoff B; Cottrill K; Blalock JE; Li W; Senderowitz H; Sorscher E; McCarty NA; Gaggar A
    Dev Cell; 2019 Nov; 51(4):421-430.e3. PubMed ID: 31679858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR.
    Randak C; Welsh MJ
    Cell; 2003 Dec; 115(7):837-50. PubMed ID: 14697202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
    Corradi V; Vergani P; Tieleman DP
    J Biol Chem; 2015 Sep; 290(38):22891-906. PubMed ID: 26229102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
    Wang W; Bernard K; Li G; Kirk KL
    J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.