BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23284139)

  • 1. Turning a spermatogenic wave into a tsunami: synchronizing murine spermatogenesis using WIN 18,446.
    Hogarth CA; Evanoff R; Mitchell D; Kent T; Small C; Amory JK; Griswold MD
    Biol Reprod; 2013 Feb; 88(2):40. PubMed ID: 23284139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of Stra8 expression in the mouse gonad by WIN 18,446.
    Hogarth CA; Evanoff R; Snyder E; Kent T; Mitchell D; Small C; Amory JK; Griswold MD
    Biol Reprod; 2011 May; 84(5):957-65. PubMed ID: 21209416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis.
    Agrimson KS; Onken J; Mitchell D; Topping TB; Chiarini-Garcia H; Hogarth CA; Griswold MD
    Biol Reprod; 2016 Oct; 95(4):81. PubMed ID: 27488029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice.
    Evans E; Hogarth C; Mitchell D; Griswold M
    Biol Reprod; 2014 May; 90(5):108. PubMed ID: 24719255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of retinoic acid biosynthesis by the bisdichloroacetyldiamine WIN 18,446 markedly suppresses spermatogenesis and alters retinoid metabolism in mice.
    Paik J; Haenisch M; Muller CH; Goldstein AS; Arnold S; Isoherranen N; Brabb T; Treuting PM; Amory JK
    J Biol Chem; 2014 May; 289(21):15104-17. PubMed ID: 24711451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term effects of N'N-bis(dichloroacetyl)-1,8-octamethylenediamine (WIN 18446) on the testes, selected sperm parameters and fertility of male CBA mice.
    Brooks NL; van der Horst G
    Lab Anim; 2003 Oct; 37(4):363-73. PubMed ID: 14599310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production.
    Hogarth CA; Arnold S; Kent T; Mitchell D; Isoherranen N; Griswold MD
    Biol Reprod; 2015 Feb; 92(2):37. PubMed ID: 25519186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential roles of gonadotropins to control pulsatile retinoic acid signaling during spermatogenesis.
    Nourashrafeddin S
    Med Hypotheses; 2015 Sep; 85(3):303-4. PubMed ID: 26141633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of spermatogenesis by bisdichloroacetyldiamines is mediated by inhibition of testicular retinoic acid biosynthesis.
    Amory JK; Muller CH; Shimshoni JA; Isoherranen N; Paik J; Moreb JS; Amory DW; Evanoff R; Goldstein AS; Griswold MD
    J Androl; 2011; 32(1):111-9. PubMed ID: 20705791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronizing spermatogenesis in the mouse.
    Griswold M; Hogarth C
    Biol Reprod; 2022 Nov; 107(5):1159-1165. PubMed ID: 35871549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of retinoic acid synthesis disrupts spermatogenesis and fecundity in zebrafish.
    Pradhan A; Olsson PE
    Gen Comp Endocrinol; 2015; 217-218():81-91. PubMed ID: 25687389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and Their Inhibition Causes Misregulation of Murine Spermatogenic Processes.
    Kent T; Arnold SL; Fasnacht R; Rowsey R; Mitchell D; Hogarth CA; Isoherranen N; Griswold MD
    Biol Reprod; 2016 Jan; 94(1):12. PubMed ID: 26632609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change.
    Agrimson KS; Oatley MJ; Mitchell D; Oatley JM; Griswold MD; Hogarth CA
    Dev Biol; 2017 Dec; 432(2):229-236. PubMed ID: 29037932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cycles, waves, and pulses: Retinoic acid and the organization of spermatogenesis.
    Gewiss R; Topping T; Griswold MD
    Andrology; 2020 Jul; 8(4):892-897. PubMed ID: 31670467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse.
    Snyder EM; Small C; Griswold MD
    Biol Reprod; 2010 Nov; 83(5):783-90. PubMed ID: 20650878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spermatogenesis: The Commitment to Meiosis.
    Griswold MD
    Physiol Rev; 2016 Jan; 96(1):1-17. PubMed ID: 26537427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse.
    Lord T; Oatley MJ; Oatley JM
    Stem Cell Reports; 2018 Feb; 10(2):538-552. PubMed ID: 29398482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes.
    Zhou Q; Nie R; Li Y; Friel P; Mitchell D; Hess RA; Small C; Griswold MD
    Biol Reprod; 2008 Jul; 79(1):35-42. PubMed ID: 18322276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis.
    Niedenberger BA; Busada JT; Geyer CB
    Reproduction; 2015 Apr; 149(4):329-38. PubMed ID: 25737569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.
    Reda A; Hou M; Winton TR; Chapin RE; Söder O; Stukenborg JB
    Mol Hum Reprod; 2016 Sep; 22(9):601-12. PubMed ID: 27430551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.