These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23284178)

  • 1. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study.
    Xu G; Dar IA; Tao C; Liu X; Deng CX; Wang X
    Appl Phys Lett; 2012 Nov; 101(22):221102. PubMed ID: 23284178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model.
    Xu G; Fowlkes JB; Tao C; Liu X; Wang X
    Ultrasound Med Biol; 2015 May; 41(5):1473-80. PubMed ID: 25748521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of bone microstructure using photoacoustic spectrum analysis.
    Feng T; Perosky JE; Kozloff KM; Xu G; Cheng Q; Du S; Yuan J; Deng CX; Wang X
    Opt Express; 2015 Sep; 23(19):25217-24. PubMed ID: 26406719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Quantitative Tissue Characterization Using Novel Parameters Extracted From Photoacoustic Power Spectrum Considering Multiple Absorbers.
    Rathi N; Sinha S; Chinni B; Dogra V; Rao N
    Ultrason Imaging; 2022 Jan; 44(1):13-24. PubMed ID: 34711106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive low-cycle fatigue characterization at high depth with photoacoustic eigen-spectrum analysis.
    Gao X; Tao C; Zhu R; Liu X
    Sci Rep; 2018 May; 8(1):7751. PubMed ID: 29773860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Wavelength Photoacoustic Visualization of High Intensity Focused Ultrasound Lesions.
    Gray JP; Dana N; Dextraze KL; Maier F; Emelianov S; Bouchard RR
    Ultrason Imaging; 2016 Jan; 38(1):96-112. PubMed ID: 26149314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Frequency Domain Analysis of a Multiwavelength Photoacoustic Signal for Differentiating Malignant From Benign and Normal Prostates: Ex Vivo Study With Human Prostates.
    Sinha S; Rao NA; Chinni BK; Dogra VS
    J Ultrasound Med; 2016 Oct; 35(10):2165-77. PubMed ID: 27573795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model.
    Kumon RE; Deng CX; Wang X
    Ultrasound Med Biol; 2011 May; 37(5):834-9. PubMed ID: 21376447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a translational photoacoustic needle sensing probe for interstitial photoacoustic spectral analysis.
    Lin WK; Ni L; Wang X; Guo JL; Xu G
    Photoacoustics; 2023 Jun; 31():100519. PubMed ID: 37362870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of number density of random microstructure from a photoacoustic signal by using Nakagami statistics.
    Gao X; Dai N; Tao C; Liu X
    Opt Lett; 2019 Jun; 44(12):2951-2954. PubMed ID: 31199353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing cellular morphology by photoacoustic spectrum analysis with an ultra-broadband optical ultrasonic detector.
    Feng T; Li Q; Zhang C; Xu G; Guo LJ; Yuan J; Wang X
    Opt Express; 2016 Aug; 24(17):19853-62. PubMed ID: 27557261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser.
    Langer G; Bouchal KD; Grün H; Burgholzer P; Berer T
    Opt Express; 2013 Sep; 21(19):22410-22. PubMed ID: 24104130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the aggressiveness of prostate cancer using an all-optical needle photoacoustic sensing probe: feasibility study.
    Ni L; Siddiqui J; Udager AM; Jo J; Wei JT; Davenport MS; Carson PL; Fowlkes JB; Wang X; Xu G
    Biomed Opt Express; 2021 Aug; 12(8):4873-4888. PubMed ID: 34513230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles.
    Wang S; Tao C; Yang Y; Wang X; Liu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1245-55. PubMed ID: 26168171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of interventional photoacoustic imaging (iPAI) capabilities in biological tissues.
    Bhagavatula SK; Li L; Tearney GJ
    Med Phys; 2021 Feb; 48(2):770-780. PubMed ID: 33264419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoacoustic simulations of microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted treatments.
    Fadhel MN; Hysi E; Zalev J; Kolios MC
    J Biomed Opt; 2019 Nov; 24(11):1-8. PubMed ID: 31707772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic resonance spectroscopy for biological tissue characterization.
    Gao F; Feng X; Zheng Y; Ohl CD
    J Biomed Opt; 2014 Jun; 19(6):067006. PubMed ID: 24928154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spread Spectrum Photoacoustic Tomography With Image Optimization.
    Cao M; Feng T; Yuan J; Xu G; Wang X; Carson PL
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):411-419. PubMed ID: 27834651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic-based visual servoing of a needle tip.
    Lediju Bell MA; Shubert J
    Sci Rep; 2018 Oct; 8(1):15519. PubMed ID: 30341371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.
    Rajian JR; Carson PL; Wang X
    Opt Express; 2009 Mar; 17(6):4879-89. PubMed ID: 19293919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.