These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23284181)

  • 1. Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits.
    Kim SJ; Yokokawa R; Takayama S
    Appl Phys Lett; 2012 Dec; 101(23):234107. PubMed ID: 23284181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.
    Kim SJ; Lai D; Park JY; Yokokawa R; Takayama S
    Small; 2012 Oct; 8(19):2925-34. PubMed ID: 22761019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular design of paper based switches for autonomous lab-on paper micro devices.
    Patil Y; Dotseth K; Shapiro T; Pushparajan D; Binderup S; Horn JR; Korampally V
    Biomed Microdevices; 2020 Nov; 23(1):1. PubMed ID: 33247780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circuit-Based Design of Microfluidic Drop Networks.
    Rousset N; Lohasz C; Boos JA; Misun PM; Cardes F; Hierlemann A
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant flow-driven microfluidic oscillator for different duty cycles.
    Kim SJ; Yokokawa R; Lesher-Perez SC; Takayama S
    Anal Chem; 2012 Jan; 84(2):1152-6. PubMed ID: 22206453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the behavior of microfluidic circuits made from discrete elements.
    Bhargava KC; Thompson B; Iqbal D; Malmstadt N
    Sci Rep; 2015 Oct; 5():15609. PubMed ID: 26516059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Soft' amplifier circuits based on field-effect ionic transistors.
    Boon N; Olvera de la Cruz M
    Soft Matter; 2015 Jun; 11(24):4793-8. PubMed ID: 25990873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical properties of pressure-actuated poly(dimethylsiloxane) microfluidic push-down valves.
    Chen H; Gu W; Cellar N; Kennedy R; Takayama S; Meiners JC
    Anal Chem; 2008 Aug; 80(15):6110-3. PubMed ID: 18576665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally-actuated microfluidic membrane valve for point-of-care applications.
    Sesen M; Rowlands CJ
    Microsyst Nanoeng; 2021; 7():48. PubMed ID: 34567761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dually active silicon nanowire transistors and circuits with equal electron and hole transport.
    Heinzig A; Mikolajick T; Trommer J; Grimm D; Weber WM
    Nano Lett; 2013 Sep; 13(9):4176-81. PubMed ID: 23919720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental synchronization of single-transistor-based chaotic circuits.
    Fortuna L; Frasca M
    Chaos; 2007 Dec; 17(4):043118. PubMed ID: 18163782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
    Doris SE; Pierre A; Street RA
    Adv Mater; 2018 Apr; 30(15):e1706757. PubMed ID: 29498110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steep-slope field-effect transistors with AlGaN/GaN HEMT and oxide-based threshold switching device.
    Huang X; Fang R; Yang C; Fu K; Fu H; Chen H; Yang TH; Zhou J; Montes J; Kozicki M; Barnaby H; Zhang B; Zhao Y
    Nanotechnology; 2019 May; 30(21):215201. PubMed ID: 30721888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery.
    Zhang X; Oseyemi AE
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.
    Wu CY; Lu JC; Liu MC; Tung YC
    Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic characterization of feature dimensions and closing pressures for microfluidic valves produced via photoresist reflow.
    Fordyce PM; Diaz-Botia CA; DeRisi JL; Gomez-Sjoberg R
    Lab Chip; 2012 Nov; 12(21):4287-95. PubMed ID: 22930180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets.
    Dang VB; Kim SJ
    Lab Chip; 2017 Jan; 17(2):286-292. PubMed ID: 28001158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer.
    Khim D; Shin EY; Xu Y; Park WT; Jin SH; Noh YY
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17416-20. PubMed ID: 27323003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.