These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23284649)

  • 41. Transcriptional and immunological analysis of the putative outer membrane protein and vaccine candidate TprL of Treponema pallidum.
    Haynes AM; Fernandez M; Romeis E; Mitjà O; Konda KA; Vargas SK; Eguiluz M; Caceres CF; Klausner JD; Giacani L
    PLoS Negl Trop Dis; 2021 Jan; 15(1):e0008812. PubMed ID: 33497377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates.
    Chuma IS; Roos C; Atickem A; Bohm T; Anthony Collins D; Grillová L; Hallmaier-Wacker LK; Kazwala RR; Keyyu JD; Lüert S; Maloueki U; Oppelt J; Petrželková KJ; Piel A; Stewart FA; Šmajs D; Knauf S
    Sci Rep; 2019 Oct; 9(1):14243. PubMed ID: 31578447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence.
    Cejková D; Zobaníková M; Chen L; Pospíšilová P; Strouhal M; Qin X; Mikalová L; Norris SJ; Muzny DM; Gibbs RA; Fulton LL; Sodergren E; Weinstock GM; Smajs D
    PLoS Negl Trop Dis; 2012 Jan; 6(1):e1471. PubMed ID: 22292095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin.
    Brinkman MB; McGill MA; Pettersson J; Rogers A; Matejková P; Smajs D; Weinstock GM; Norris SJ; Palzkill T
    Infect Immun; 2008 May; 76(5):1848-57. PubMed ID: 18332212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen.
    Giacani L; Chattopadhyay S; Centurion-Lara A; Jeffrey BM; Le HT; Molini BJ; Lukehart SA; Sokurenko EV; Rockey DD
    PLoS Negl Trop Dis; 2012; 6(6):e1698. PubMed ID: 22720110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tracing the origin of Treponema pallidum in China using next-generation sequencing.
    Sun J; Meng Z; Wu K; Liu B; Zhang S; Liu Y; Wang Y; Zheng H; Huang J; Zhou P
    Oncotarget; 2016 Jul; 7(28):42904-42918. PubMed ID: 27344187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tools for opening new chapters in the book of Treponema pallidum evolutionary history.
    Gogarten JF; Düx A; Schuenemann VJ; Nowak K; Boesch C; Wittig RM; Krause J; Calvignac-Spencer S; Leendertz FH
    Clin Microbiol Infect; 2016 Nov; 22(11):916-921. PubMed ID: 27498082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular differentiation of Treponema pallidum subspecies in skin ulceration clinically suspected as yaws in Vanuatu using real-time multiplex PCR and serological methods.
    Chi KH; Danavall D; Taleo F; Pillay A; Ye T; Nachamkin E; Kool JL; Fegan D; Asiedu K; Vestergaard LS; Ballard RC; Chen CY
    Am J Trop Med Hyg; 2015 Jan; 92(1):134-8. PubMed ID: 25404075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe.
    Majander K; Pfrengle S; Kocher A; Neukamm J; du Plessis L; Pla-Díaz M; Arora N; Akgül G; Salo K; Schats R; Inskip S; Oinonen M; Valk H; Malve M; Kriiska A; Onkamo P; González-Candelas F; Kühnert D; Krause J; Schuenemann VJ
    Curr Biol; 2020 Oct; 30(19):3788-3803.e10. PubMed ID: 32795443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Haemophilus ducreyi as a cause of skin ulcers in children from a yaws-endemic area of Papua New Guinea: a prospective cohort study.
    Mitjà O; Lukehart SA; Pokowas G; Moses P; Kapa A; Godornes C; Robson J; Cherian S; Houinei W; Kazadi W; Siba P; de Lazzari E; Bassat Q
    Lancet Glob Health; 2014 Apr; 2(4):e235-41. PubMed ID: 25103064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum.
    Leader BT; Hevner K; Molini BJ; Barrett LK; Van Voorhis WC; Lukehart SA
    Infect Immun; 2003 Oct; 71(10):6054-7. PubMed ID: 14500529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies.
    Zobaníková M; Strouhal M; Mikalová L; Cejková D; Ambrožová L; Pospíšilová P; Fulton LL; Chen L; Sodergren E; Weinstock GM; Smajs D
    PLoS Negl Trop Dis; 2013; 7(4):e2172. PubMed ID: 23638193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009-2013.
    Wu BR; Yang CJ; Tsai MS; Lee KY; Lee NY; Huang WC; Wu H; Lee CH; Chen TC; Ko WC; Lin HH; Lu PL; Chen YH; Liu WC; Yang SP; Wu PY; Su YC; Hung CC; Chang SY
    Clin Microbiol Infect; 2014 Aug; 20(8):802-7. PubMed ID: 24438059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of Full-Length TprK Diversity in Treponema pallidum subsp.
    Addetia A; Lin MJ; Phung Q; Xie H; Huang ML; Ciccarese G; Dal Conte I; Cusini M; Drago F; Giacani L; Greninger AL
    mBio; 2020 Oct; 11(5):. PubMed ID: 33109767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coinfection of a yaws patient with two closely related Treponema pallidum subsp. pertenue strains: A rare event with potential evolutionary implications.
    Medappa M; Pospíšilová P; John LN; González-Beiras C; Mitjà O; Šmajs D
    Acta Trop; 2024 Aug; 256():107254. PubMed ID: 38759832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster.
    Arora N; Schuenemann VJ; Jäger G; Peltzer A; Seitz A; Herbig A; Strouhal M; Grillová L; Sánchez-Busó L; Kühnert D; Bos KI; Davis LR; Mikalová L; Bruisten S; Komericki P; French P; Grant PR; Pando MA; Vaulet LG; Fermepin MR; Martinez A; Centurion Lara A; Giacani L; Norris SJ; Šmajs D; Bosshard PP; González-Candelas F; Nieselt K; Krause J; Bagheri HC
    Nat Microbiol; 2016 Dec; 2():16245. PubMed ID: 27918528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Target organs of infection in guinea pigs with acquired congenital syphilis.
    Wicher K; Abbruscato F; Wicher V; Baughn R; Noordhoek GT
    Infect Immun; 1996 Aug; 64(8):3174-9. PubMed ID: 8757850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Syphilis epidemiology in 1994-2013, molecular epidemiological strain typing and determination of macrolide resistance in Treponema pallidum in 2013-2014 in Tuva Republic, Russia.
    Khairullin R; Vorobyev D; Obukhov A; Kuular UH; Kubanova A; Kubanov A; Unemo M
    APMIS; 2016 Jul; 124(7):595-602. PubMed ID: 27102715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis.
    Harper KN; Liu H; Ocampo PS; Steiner BM; Martin A; Levert K; Wang D; Sutton M; Armelagos GJ
    FEMS Immunol Med Microbiol; 2008 Aug; 53(3):322-32. PubMed ID: 18554302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. No bejel among Surinamese, Antillean and Dutch syphilis diagnosed patients in Amsterdam between 2006-2018 evidenced by multi-locus sequence typing of Treponema pallidum isolates.
    Zondag HCA; Bruisten SM; Vrbová E; Šmajs D
    PLoS One; 2020; 15(3):e0230288. PubMed ID: 32160272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.