These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23284804)

  • 1. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.
    Qiao M; Jindrich DL
    PLoS One; 2012; 7(12):e51888. PubMed ID: 23284804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensations during Unsteady Locomotion.
    Qiao M; Jindrich DL
    Integr Comp Biol; 2014 Dec; 54(6):1109-21. PubMed ID: 24948138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maneuvers during legged locomotion.
    Jindrich DL; Qiao M
    Chaos; 2009 Jun; 19(2):026105. PubMed ID: 19566265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots.
    Drama Ö; Badri-Spröwitz A
    Bioinspir Biomim; 2020 Mar; 15(3):036013. PubMed ID: 32052793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Running on uneven ground: leg adjustment to vertical steps and self-stability.
    Grimmer S; Ernst M; Günther M; Blickhan R
    J Exp Biol; 2008 Sep; 211(Pt 18):2989-3000. PubMed ID: 18775936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.
    Vejdani HR; Blum Y; Daley MA; Hurst JW
    Bioinspir Biomim; 2013 Dec; 8(4):046006. PubMed ID: 24166776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling of the spring in the leg during bouncing gaits of mammals.
    Lee DV; Isaacs MR; Higgins TE; Biewener AA; McGowan CP
    Integr Comp Biol; 2014 Dec; 54(6):1099-108. PubMed ID: 25305189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for differential leg joint function during human running.
    Qiao M; Abbas JJ; Jindrich DL
    Bioinspir Biomim; 2017 Jan; 12(1):016015. PubMed ID: 28134133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
    Srinivasan M; Holmes P
    J Theor Biol; 2008 Nov; 255(1):1-7. PubMed ID: 18671984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animals prefer leg stiffness values that may reduce the energetic cost of locomotion.
    Shen Z; Seipel J
    J Theor Biol; 2015 Jan; 364():433-8. PubMed ID: 25234232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotary and radial forcing effects on center-of-mass locomotion dynamics.
    Shen ZH; Larson PL; Seipel JE
    Bioinspir Biomim; 2014 Sep; 9(3):036020. PubMed ID: 25162748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fundamental mechanism of legged locomotion with hip torque and leg damping.
    Shen ZH; Seipel JE
    Bioinspir Biomim; 2012 Dec; 7(4):046010. PubMed ID: 22989956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control.
    Biewener AA; Daley MA
    J Exp Biol; 2007 Sep; 210(Pt 17):2949-60. PubMed ID: 17704070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.