These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 23284812)
21. Chronic methylphenidate preferentially alters catecholamine protein targets in the parietal cortex and ventral striatum. Quansah E; Zetterström TSC Neurochem Int; 2019 Mar; 124():193-199. PubMed ID: 30660754 [TBL] [Abstract][Full Text] [Related]
22. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder. Somkuwar SS; Kantak KM; Dwoskin LP J Neurosci Methods; 2015 Aug; 252():55-63. PubMed ID: 25680322 [TBL] [Abstract][Full Text] [Related]
23. Phenylephrine enhances glutamate release in the medial prefrontal cortex through interaction with N-type Ca2+ channels and release machinery. Luo F; Li SH; Tang H; Deng WK; Zhang Y; Liu Y J Neurochem; 2015 Jan; 132(1):38-50. PubMed ID: 25196067 [TBL] [Abstract][Full Text] [Related]
24. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD. Cheng J; Liu A; Shi MY; Yan Z Neuropsychopharmacology; 2017 Sep; 42(10):2096-2104. PubMed ID: 28176786 [TBL] [Abstract][Full Text] [Related]
26. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Berridge CW; Devilbiss DM; Andrzejewski ME; Arnsten AF; Kelley AE; Schmeichel B; Hamilton C; Spencer RC Biol Psychiatry; 2006 Nov; 60(10):1111-20. PubMed ID: 16806100 [TBL] [Abstract][Full Text] [Related]
27. Methylphenidate enhances inhibitory synaptic transmission by increasing the content of norepinephrine in the locus coeruleus of juvenile rats. Kidani Y; Ishimatsu M; Akasu T Kurume Med J; 2010; 57(1-2):29-38. PubMed ID: 21727763 [TBL] [Abstract][Full Text] [Related]
28. [Effect of methylphenidate on c-Fos expression in parvalbumin interneurons of juvenile rat frontal cortex]. Zhang YC; Zhu XQ; Zhang XH Sheng Li Xue Bao; 2017 Aug; 69(4):378-384. PubMed ID: 28825095 [TBL] [Abstract][Full Text] [Related]
29. Pre- and postsynaptic beta-adrenergic activation enhances excitatory synaptic transmission in layer V/VI pyramidal neurons of the medial prefrontal cortex of rats. Ji XH; Cao XH; Zhang CL; Feng ZJ; Zhang XH; Ma L; Li BM Cereb Cortex; 2008 Jul; 18(7):1506-20. PubMed ID: 17965126 [TBL] [Abstract][Full Text] [Related]
30. Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons. Urban KR; Waterhouse BD; Gao WJ Biol Psychiatry; 2012 Nov; 72(10):880-8. PubMed ID: 22609367 [TBL] [Abstract][Full Text] [Related]
31. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats. Lazzaretti C; Kincheski GC; Pandolfo P; Krolow R; Toniazzo AP; Arcego DM; Couto-Pereira Nde S; Zeidán-Chuliá F; Galvalisi M; Costa G; Scorza C; Souza TM; Dalmaz C J Integr Neurosci; 2016 Mar; 15(1):81-95. PubMed ID: 26620193 [TBL] [Abstract][Full Text] [Related]
32. Preventative treatment in an animal model of ADHD: Behavioral and biochemical effects of methylphenidate and its interactions with ovarian hormones in female rats. Lukkes JL; Freund N; Thompson BS; Meda S; Andersen SL Eur Neuropsychopharmacol; 2016 Sep; 26(9):1496-1506. PubMed ID: 27397110 [TBL] [Abstract][Full Text] [Related]
33. Effects of methylphenidate on mitochondrial dynamics and bioenergetics in the prefrontal cortex of juvenile rats are sex-dependent. Rieder AS; Ramires Júnior OV; Prauchner GRK; Wyse ATS Prog Neuropsychopharmacol Biol Psychiatry; 2024 Aug; 134():111057. PubMed ID: 38880464 [TBL] [Abstract][Full Text] [Related]
34. Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to low-dose psychostimulants. Schmeichel BE; Berridge CW Neuropsychopharmacology; 2013 May; 38(6):1078-84. PubMed ID: 23303075 [TBL] [Abstract][Full Text] [Related]
36. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. Wilens TE J Clin Psychopharmacol; 2008 Jun; 28(3 Suppl 2):S46-53. PubMed ID: 18480677 [TBL] [Abstract][Full Text] [Related]
37. Age-Dependent D1-D2 Receptor Coactivation in the Lateral Orbitofrontal Cortex Potentiates NMDA Receptors and Facilitates Cognitive Flexibility. Thompson JL; Yang J; Lau B; Liu S; Baimel C; Kerr LE; Liu F; Borgland SL Cereb Cortex; 2016 Dec; 26(12):4524-4539. PubMed ID: 26405054 [TBL] [Abstract][Full Text] [Related]
38. Impact of developmental exposure to methylphenidate on rat brain's immune privilege and behavior: Control versus ADHD model. Coelho-Santos V; Cardoso FL; Leitão RA; Fontes-Ribeiro CA; Silva AP Brain Behav Immun; 2018 Feb; 68():169-182. PubMed ID: 29061363 [TBL] [Abstract][Full Text] [Related]
39. Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats. dos Santos Pereira M; Sathler MF; Valli Tda R; Marques RS; Ventura AL; Peccinalli NR; Fraga MC; Manhães AC; Kubrusly R PLoS One; 2015; 10(10):e0141249. PubMed ID: 26509840 [TBL] [Abstract][Full Text] [Related]
40. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. Gamo NJ; Wang M; Arnsten AF J Am Acad Child Adolesc Psychiatry; 2010 Oct; 49(10):1011-23. PubMed ID: 20855046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]