These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 23284812)
41. The prefrontal cortex and the caudate nucleus respond conjointly to methylphenidate (Ritalin). Concomitant behavioral and neuronal recording study. Venkataraman SS; Claussen CM; Kharas N; Dafny N Brain Res Bull; 2020 Apr; 157():77-89. PubMed ID: 31987926 [TBL] [Abstract][Full Text] [Related]
42. cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta 1-adrenoceptors. Pascoli V; Valjent E; Corbillé AG; Corvol JC; Tassin JP; Girault JA; Hervé D Mol Pharmacol; 2005 Aug; 68(2):421-9. PubMed ID: 15890841 [TBL] [Abstract][Full Text] [Related]
43. Methylphenidate increases glucose uptake in the brain of young and adult rats. Réus GZ; Scaini G; Titus SE; Furlanetto CB; Wessler LB; Ferreira GK; Gonçalves CL; Jeremias GC; Quevedo J; Streck EL Pharmacol Rep; 2015 Oct; 67(5):1033-40. PubMed ID: 26398400 [TBL] [Abstract][Full Text] [Related]
44. Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats. Yabuki Y; Shioda N; Maeda T; Hiraide S; Togashi H; Fukunaga K Brain Res; 2014 Apr; 1557():90-100. PubMed ID: 24561222 [TBL] [Abstract][Full Text] [Related]
45. Alterations in brain neurotrophic and glial factors following early age chronic methylphenidate and cocaine administration. Simchon-Tenenbaum Y; Weizman A; Rehavi M Behav Brain Res; 2015 Apr; 282():125-32. PubMed ID: 25576963 [TBL] [Abstract][Full Text] [Related]
46. Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats. Réus GZ; Scaini G; Jeremias GC; Furlanetto CB; Morais MO; Mello-Santos LM; Quevedo J; Streck EL Brain Res; 2014 Oct; 1583():269-76. PubMed ID: 25128604 [TBL] [Abstract][Full Text] [Related]
48. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Monden Y; Dan H; Nagashima M; Dan I; Kyutoku Y; Okamoto M; Yamagata T; Momoi MY; Watanabe E Clin Neurophysiol; 2012 Jun; 123(6):1147-57. PubMed ID: 22088661 [TBL] [Abstract][Full Text] [Related]
49. Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex. Kruse MS; Prémont J; Krebs MO; Jay TM Eur Neuropsychopharmacol; 2009 Apr; 19(4):296-304. PubMed ID: 19186032 [TBL] [Abstract][Full Text] [Related]
50. Prefrontal cortex Homer expression in an animal model of attention-deficit/hyperactivity disorder. Hong Q; Zhang M; Pan XQ; Guo M; Li F; Tong ML; Chen RH; Guo XR; Chi X J Neurol Sci; 2009 Dec; 287(1-2):205-11. PubMed ID: 19709672 [TBL] [Abstract][Full Text] [Related]
51. Impairment of N-methyl-D-aspartate receptor-controlled motor activity in LYN-deficient mice. Umemori H; Ogura H; Tozawa N; Mikoshiba K; Nishizumi H; Yamamoto T Neuroscience; 2003; 118(3):709-13. PubMed ID: 12710978 [TBL] [Abstract][Full Text] [Related]
52. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors. Sabeti J; Nelson TE; Purdy RH; Gruol DL Hippocampus; 2007; 17(5):349-69. PubMed ID: 17330865 [TBL] [Abstract][Full Text] [Related]
53. Methylphenidate administration reverts attentional inflexibility in adolescent rats submitted to a model of neonatal hypoxia-ischemia: Predictive validity for ADHD study. Miguel PM; Deniz BF; Confortim HD; Bronauth LP; de Oliveira BC; Alves MB; Silveira PP; Pereira LO Exp Neurol; 2019 May; 315():88-99. PubMed ID: 30771298 [TBL] [Abstract][Full Text] [Related]
54. Methylphenidate alters NCS-1 expression in rat brain. Souza RP; Soares EC; Rosa DV; Souza BR; Réus GZ; Barichello T; Gomes KM; Gomez MV; Quevedo J; Romano-Silva MA Neurochem Int; 2008 Jul; 53(1-2):12-6. PubMed ID: 18514368 [TBL] [Abstract][Full Text] [Related]
55. Stimulants: Therapeutic actions in ADHD. Arnsten AF Neuropsychopharmacology; 2006 Nov; 31(11):2376-83. PubMed ID: 16855530 [TBL] [Abstract][Full Text] [Related]
56. Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus. Ishimatsu M; Kidani Y; Tsuda A; Akasu T J Neurophysiol; 2002 Mar; 87(3):1206-12. PubMed ID: 11877494 [TBL] [Abstract][Full Text] [Related]
57. Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. Tyszkiewicz JP; Gu Z; Wang X; Cai X; Yan Z J Physiol; 2004 Feb; 554(Pt 3):765-77. PubMed ID: 14645456 [TBL] [Abstract][Full Text] [Related]
58. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex. Arvanov VL; Liang X; Russo A; Wang RY Eur J Neurosci; 1999 Sep; 11(9):3064-72. PubMed ID: 10510170 [TBL] [Abstract][Full Text] [Related]
59. Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients. Solleveld MM; Schrantee A; Puts NAJ; Reneman L; Lucassen PJ Neuroimage Clin; 2017; 15():812-818. PubMed ID: 28725548 [TBL] [Abstract][Full Text] [Related]
60. Methylphenidate induces state-dependency of social recognition learning: Central components. Garrido Zinn C; Bühler L; Cavalcante LE; Schmidt SD; Fagundes Ferreira F; Zanini ML; Guerino Furini CR; de Carvalho Myskiw J; Izquierdo I Neurobiol Learn Mem; 2018 Mar; 149():77-83. PubMed ID: 29408055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]