These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23284836)

  • 1. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed.
    Mendez-Villanueva A; Edge J; Suriano R; Hamer P; Bishop D
    PLoS One; 2012; 7(12):e51977. PubMed ID: 23284836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK; Nevill AM
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):467-80. PubMed ID: 7714837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output.
    Mendez-Villanueva A; Hamer P; Bishop D
    Med Sci Sports Exerc; 2007 Dec; 39(12):2219-25. PubMed ID: 18046194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK
    J Appl Physiol (1985); 1996 Mar; 80(3):876-84. PubMed ID: 8964751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity.
    Mendez-Villanueva A; Hamer P; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(4):411-9. PubMed ID: 18368419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and metabolism in repeated sprint exercise: effect of recovery intensity.
    Spencer M; Dawson B; Goodman C; Dascombe B; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(5):545-52. PubMed ID: 18443815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical work accounts for sex differences in fatigue during repeated sprints.
    Billaut F; Bishop DJ
    Eur J Appl Physiol; 2012 Apr; 112(4):1429-36. PubMed ID: 21830096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle phosphocreatine repletion following single and repeated short sprint efforts.
    Dawson B; Goodman C; Lawrence S; Preen D; Polglaze T; Fitzsimons M; Fournier P
    Scand J Med Sci Sports; 1997 Aug; 7(4):206-13. PubMed ID: 9241025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular fatigue of the elbow flexors during repeated maximal arm cycling sprints: the effects of forearm position.
    Lockyer EJ; Buckle NCM; Collins BW; Button DC
    Appl Physiol Nutr Metab; 2021 Jun; 46(6):606-616. PubMed ID: 33296273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive.
    Girard O; Billaut F; Christian RJ; Bradley PS; Bishop DJ
    Eur J Appl Physiol; 2017 Nov; 117(11):2171-2179. PubMed ID: 28852828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oral administration of sodium bicarbonate on surface EMG activity during repeated cycling sprints.
    Matsuura R; Arimitsu T; Kimura T; Yunoki T; Yano T
    Eur J Appl Physiol; 2007 Nov; 101(4):409-17. PubMed ID: 17628824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological responses to repeated upper-body sprint exercise in highly trained athletes.
    Sandbakk Ø; Skålvik TF; Spencer M; van Beekvelt M; Welde B; Hegge AM; Gjøvaag T; Ettema G
    Eur J Appl Physiol; 2015 Jun; 115(6):1381-91. PubMed ID: 25677383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated-sprint ability - part I: factors contributing to fatigue.
    Girard O; Mendez-Villanueva A; Bishop D
    Sports Med; 2011 Aug; 41(8):673-94. PubMed ID: 21780851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical, Biochemical, and Neuromuscular Responses to Repeated Sprint Exercise in Eumenorrheic Female Handball Players: Effect of Menstrual Cycle Phases.
    Graja A; Kacem M; Hammouda O; Borji R; Bouzid MA; Souissi N; Rebai H
    J Strength Cond Res; 2022 Aug; 36(8):2268-2276. PubMed ID: 32168179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid recovery of power output in females.
    Cherry PW; Lakomy HK; Boobis LH; Nevill ME
    Acta Physiol Scand; 1998 Sep; 164(1):79-87. PubMed ID: 9777028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of high-intensity intermittent cycling sprints on neuromuscular activity.
    Billaut F; Basset FA; Giacomoni M; Lemaître F; Tricot V; Falgairette G
    Int J Sports Med; 2006 Jan; 27(1):25-30. PubMed ID: 16388438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sodium pyruvate supplementation on repeated sprint exercise performance and recovery in male college soccer players: a randomized controlled trial.
    Yang YP; Qiu JQ; Wang MY; Feng L; Luo D; Gao RR; Zhou FQ; Che KX
    Ann Palliat Med; 2022 Feb; 11(2):598-610. PubMed ID: 35249338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism and performance in repeated cycle sprints: active versus passive recovery.
    Spencer M; Bishop D; Dawson B; Goodman C; Duffield R
    Med Sci Sports Exerc; 2006 Aug; 38(8):1492-9. PubMed ID: 16888464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle metabolism during sprint exercise in man: influence of sprint training.
    Barnett C; Carey M; Proietto J; Cerin E; Febbraio MA; Jenkins D
    J Sci Med Sport; 2004 Sep; 7(3):314-22. PubMed ID: 15518296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.