BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23284891)

  • 1. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.
    Chae CS; Kwon HK; Hwang JS; Kim JE; Im SH
    PLoS One; 2012; 7(12):e52119. PubMed ID: 23284891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.
    Duan RS; Adikari SB; Huang YM; Link H; Xiao BG
    Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile.
    Yang H; Zhang Y; Wu M; Li J; Zhou W; Li G; Li X; Xiao B; Christadoss P
    Inflamm Res; 2010 Mar; 59(3):197-205. PubMed ID: 19768385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased expression of miR-29 family associated with autoimmune myasthenia gravis.
    Cron MA; Payet CA; Fayet OM; Maillard S; Truffault F; Fadel E; Guihaire J; Berrih-Aknin S; Liston A; Le Panse R
    J Neuroinflammation; 2020 Oct; 17(1):294. PubMed ID: 33032631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.
    Im SH; Barchan D; Maiti PK; Fuchs S; Souroujon MC
    J Immunol; 2001 Jun; 166(11):6893-8. PubMed ID: 11359850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells.
    Xiao BG; Duan RS; Link H; Huang YM
    Cell Immunol; 2003 May; 223(1):63-9. PubMed ID: 12914759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-gamma-expressing Th1-like cells and up-regulation of TGF-beta mRNA in mononuclear cells.
    Ma CG; Zhang GX; Xiao BG; Wang ZY; Link J; Olsson T; Link H
    Ann N Y Acad Sci; 1996 Feb; 778():273-87. PubMed ID: 8610980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T cells and cytokines in the pathogenesis of acquired myasthenia gravis.
    Milani M; Ostlie N; Wang W; Conti-Fine BM
    Ann N Y Acad Sci; 2003 Sep; 998():284-307. PubMed ID: 14592887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous IL-9 Ameliorates Experimental Autoimmune Myasthenia Gravis Symptoms in Rats.
    Yao X; Zhao J; Kong Q; Xie X; Wang J; Sun B; Xu L; Mu L; Li H
    Immunol Invest; 2018 Oct; 47(7):712-724. PubMed ID: 29944018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
    Thiruppathi M; Sheng JR; Li L; Prabhakar BS; Meriggioli MN
    J Autoimmun; 2014 Aug; 52():64-73. PubMed ID: 24388113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis.
    Yarilin D; Duan R; Huang YM; Xiao BG
    Clin Exp Immunol; 2002 Feb; 127(2):214-9. PubMed ID: 11876742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
    Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S
    Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines.
    Li XL; Liu Y; Cao LL; Li H; Yue LT; Wang S; Zhang M; Li XH; Dou YC; Duan RS
    Mol Cell Neurosci; 2013 Sep; 56():85-95. PubMed ID: 23541702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals.
    Shi FD; Bai XF; Li HL; Huang YM; Van der Meide PH; Link H
    Clin Exp Immunol; 1998 Mar; 111(3):506-12. PubMed ID: 9528890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.