These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23285537)

  • 1. Thoracic abnormality detection with data adaptive structure estimation.
    Song Y; Cai W; Zhou Y; Feng D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):74-81. PubMed ID: 23285537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminative pathological context detection in thoracic images based on multi-level inference.
    Song Y; Cai W; Eberl S; Fulham MJ; Feng D
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):191-8. PubMed ID: 22003699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediastinal atlas creation from 3-D chest computed tomography images: application to automated detection and station mapping of lymph nodes.
    Feuerstein M; Glocker B; Kitasaka T; Nakamura Y; Iwano S; Mori K
    Med Image Anal; 2012 Jan; 16(1):63-74. PubMed ID: 21641269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung metastases detection in CT images using 3D template matching.
    Wang P; DeNunzio A; Okunieff P; O'Dell WG
    Med Phys; 2007 Mar; 34(3):915-22. PubMed ID: 17441237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic accuracy of (18)F-2-deoxy-fluoro-D-glucose positron emission tomography for pN2 lymph nodes in patients with lung cancer.
    Ozawa Y; Hara M; Sakurai K; Nakagawa M; Tamaki T; Nishio M; Shibamoto Y
    Acta Radiol; 2010 Mar; 51(2):150-5. PubMed ID: 20092375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior.
    Feulner J; Zhou SK; Hammon M; Hornegger J; Comaniciu D
    Med Image Anal; 2013 Feb; 17(2):254-70. PubMed ID: 23246185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multistage discriminative model for tumor and lymph node detection in thoracic images.
    Song Y; Cai W; Kim J; Feng DD
    IEEE Trans Med Imaging; 2012 May; 31(5):1061-75. PubMed ID: 22271834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the accuracy of 18F-FDG PET/CT interpretation of "mildly positive" mediastinal nodes in the staging of non-small cell lung cancer.
    Moloney F; Ryan D; McCarthy L; McCarthy J; Burke L; Henry MT; Kennedy MP; Hinchion J; McSweeney S; Maher MM; O'Regan K
    Eur J Radiol; 2014 May; 83(5):843-7. PubMed ID: 24581594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Region-based snake with edge constraint for segmentation of lymph nodes on CT images.
    Yu P; Poh CL
    Comput Biol Med; 2015 May; 60():86-91. PubMed ID: 25756705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of results of computed tomography and radiography with histopathologic findings in tracheobronchial lymph nodes in dogs with primary lung tumors: 14 cases (1999-2002).
    Paoloni MC; Adams WM; Dubielzig RR; Kurzman I; Vail DM; Hardie RJ
    J Am Vet Med Assoc; 2006 Jun; 228(11):1718-22. PubMed ID: 16740073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thoracic CT-PET registration using a 3D breathing model.
    Moreno A; Chambon S; Santhanam AP; Brocardo R; Kupelian P; Rolland JP; Angelini E; Bloch I
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):626-33. PubMed ID: 18051111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Significance of dual-time-point 18F-FDG PET imaging in evaluation of hilar and mediastinal lymph node metastasis in non-small-cell lung cancer].
    Hu M; Yu JM; Liu NB; Liu LP; Guo HB; Yang GR; Zhang PL; Xu XQ
    Zhonghua Zhong Liu Za Zhi; 2008 Apr; 30(4):306-9. PubMed ID: 18788639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-dimensional (4D) PET/CT imaging of the thorax.
    Nehmeh SA; Erdi YE; Pan T; Pevsner A; Rosenzweig KE; Yorke E; Mageras GS; Schoder H; Vernon P; Squire O; Mostafavi H; Larson SM; Humm JL
    Med Phys; 2004 Dec; 31(12):3179-86. PubMed ID: 15651600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.
    Guo Y; Feng Y; Sun J; Zhang N; Lin W; Sa Y; Wang P
    Comput Math Methods Med; 2014; 2014():401201. PubMed ID: 24987451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PET staging of mediastinal lymph nodes in thoracic oncology.
    Broderick SR; Meyers BF
    Thorac Surg Clin; 2012 May; 22(2):161-6. PubMed ID: 22520283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated interpretation of PET/CT images in patients with lung cancer.
    Gutte H; Jakobsson D; Olofsson F; Ohlsson M; Valind S; Loft A; Edenbrandt L; Kjaer A
    Nucl Med Commun; 2007 Feb; 28(2):79-84. PubMed ID: 17198346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved image interpretation with registered thoracic CT and positron emission tomography data sets.
    Aquino SL; Asmuth JC; Moore RH; Weise SB; Fischman AJ
    AJR Am J Roentgenol; 2002 Apr; 178(4):939-44. PubMed ID: 11906878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans.
    Li Q; Sone S; Doi K
    Med Phys; 2003 Aug; 30(8):2040-51. PubMed ID: 12945970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic Accuracy of Mediastinal Lymph Node Staging Techniques in the Preoperative Assessment of Nonsmall Cell Lung Cancer Patients.
    Fréchet B; Kazakov J; Thiffault V; Ferraro P; Liberman M
    J Bronchology Interv Pulmonol; 2018 Jan; 25(1):17-24. PubMed ID: 29261576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer.
    Herth FJ; Eberhardt R; Krasnik M; Ernst A
    Chest; 2008 Apr; 133(4):887-91. PubMed ID: 18263680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.