BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23285581)

  • 1. Data-driven breast decompression and lesion mapping from digital breast tomosynthesis.
    Wels M; Kelm BM; Hammon M; Jerebko A; Sühling M; Comaniciu D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):438-46. PubMed ID: 23285581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformable mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images.
    Green CA; Goodsitt MM; Brock KK; Davis CL; Larson ED; Lau JH; Carson PL
    Med Phys; 2018 Oct; 45(10):4402-4417. PubMed ID: 30066340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative compressed breast shape model for digital mammography and digital breast tomosynthesis.
    Pinto MC; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 May; 50(5):2928-2938. PubMed ID: 36433824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated nipple detection in digital breast tomosynthesis.
    Chae SH; Jeong JW; Choi JH; Chae EY; Kim HH; Choi YW; Lee S
    Comput Methods Programs Biomed; 2017 May; 143():113-120. PubMed ID: 28391808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformable mapping using biomechanical models to relate corresponding lesions in digital breast tomosynthesis and automated breast ultrasound images.
    Green CA; Goodsitt MM; Roubidoux MA; Brock KK; Davis CL; Lau JH; Carson PL
    Med Image Anal; 2020 Feb; 60():101599. PubMed ID: 31760192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital breast tomosynthesis (DBT): initial experience in a clinical setting.
    Skaane P; Gullien R; Bjørndal H; Eben EB; Ekseth U; Haakenaasen U; Jahr G; Jebsen IN; Krager M
    Acta Radiol; 2012 Jun; 53(5):524-9. PubMed ID: 22593120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image artifacts in digital breast tomosynthesis: investigation of the effects of system geometry and reconstruction parameters using a linear system approach.
    Hu YH; Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5242-52. PubMed ID: 19175083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice.
    Greenberg JS; Javitt MC; Katzen J; Michael S; Holland AE
    AJR Am J Roentgenol; 2014 Sep; 203(3):687-93. PubMed ID: 24918774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for dense breasts: digital breast tomosynthesis.
    Destounis SV; Morgan R; Arieno A
    AJR Am J Roentgenol; 2015 Feb; 204(2):261-4. PubMed ID: 25615747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms.
    van Schie G; Wallis MG; Leifland K; Danielsson M; Karssemeijer N
    Med Phys; 2013 Apr; 40(4):041902. PubMed ID: 23556896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesized Digital Mammography Imaging.
    Freer PE; Winkler N
    Radiol Clin North Am; 2017 May; 55(3):503-512. PubMed ID: 28411676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Addition of Digital Breast Tomosynthesis (DBT) to Standard 2D Digital Screening Mammography on the Rates of Patient Recall, Cancer Detection, and Recommendations for Short-term Follow-up.
    Powell JL; Hawley JR; Lipari AM; Yildiz VO; Erdal BS; Carkaci S
    Acad Radiol; 2017 Mar; 24(3):302-307. PubMed ID: 27919540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.
    Yousefi M; Krzyżak A; Suen CY
    Comput Biol Med; 2018 May; 96():283-293. PubMed ID: 29665537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital tomosynthesis: a new future for breast imaging?
    Alakhras M; Bourne R; Rickard M; Ng KH; Pietrzyk M; Brennan PC
    Clin Radiol; 2013 May; 68(5):e225-36. PubMed ID: 23465326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved digital breast tomosynthesis images using automated ultrasound.
    Zhang X; Yuan J; Du S; Kripfgans OD; Wang X; Carson PL; Liu X
    Med Phys; 2014 Jun; 41(6):061911. PubMed ID: 24877822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital breast tomosynthesis versus full-field digital mammography-Which modality provides more accurate prediction of margin status in specimen radiography?
    Amer HA; Schmitzberger F; Ingold-Heppner B; Kussmaul J; El Tohamy MF; Tantawy HI; Hamm B; Makowski M; Fallenberg EM
    Eur J Radiol; 2017 Aug; 93():258-264. PubMed ID: 28668424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.
    Castillo-García M; Chevalier M; Garayoa J; Rodriguez-Ruiz A; García-Pinto D; Valverde J
    Acad Radiol; 2017 Jul; 24(7):802-810. PubMed ID: 28214227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital breast tomosynthesis within a symptomatic "one-stop breast clinic" for characterization of subtle findings.
    Bansal GJ; Young P
    Br J Radiol; 2015 Sep; 88(1053):20140855. PubMed ID: 26133221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.