BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23286093)

  • 1. Assessment of navigation cues with proximal force sensing during endovascular catheterization.
    Rafii-Taril H; Payne CJ; Riga C; Bicknell C; Lee SL; Yang GZ
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):560-7. PubMed ID: 23286093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective Assessment of Endovascular Navigation Skills with Force Sensing.
    Rafii-Tari H; Payne CJ; Bicknell C; Kwok KW; Cheshire NJW; Riga C; Yang GZ
    Ann Biomed Eng; 2017 May; 45(5):1315-1327. PubMed ID: 28181002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current and emerging robot-assisted endovascular catheterization technologies: a review.
    Rafii-Tari H; Payne CJ; Yang GZ
    Ann Biomed Eng; 2014 Apr; 42(4):697-715. PubMed ID: 24281653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Methods of resolution for haptic assistance during catheterization].
    Kern TA; Herrmann J; Klages S; Meiss T; Werthschützky R
    Biomed Tech (Berl); 2005; 50(1-2):8-13. PubMed ID: 15792195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and performance evaluation of a master controller for endovascular catheterization.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):119-31. PubMed ID: 26067289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic catheter system with real-time force feedback and monitor.
    Xiao N; Guo J; Guo S; Tamiya T
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):283-9. PubMed ID: 22763489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved haptic interface for colonoscopy simulation.
    Woo HS; Kim WS; Ahn W; Lee DY; Yi SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1253-6. PubMed ID: 18002190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot.
    Rafii-Tari H; Riga CV; Payne CJ; Hamady MS; Cheshire NJ; Bicknell CD; Yang GZ
    J Vasc Surg; 2016 Nov; 64(5):1422-1432. PubMed ID: 26386511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.
    Paydar OH; Wottawa CR; Fan RE; Dutson EP; Grundfest WS; Culjat MO; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2355-8. PubMed ID: 23366397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapter for contact force sensing of the da Vinci robot.
    Shimachi S; Hirunyanitiwatna S; Fujiwara Y; Hashimoto A; Hakozaki Y
    Int J Med Robot; 2008 Jun; 4(2):121-30. PubMed ID: 18382995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-based modeling of endovascular navigation for collaborative robotic catheterization.
    Rafii-Tari H; Liu J; Lee SL; Bicknell C; Yang GZ
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):369-77. PubMed ID: 24579162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel remote-controlled robotic system for cerebrovascular intervention.
    Shen H; Wang C; Xie L; Zhou S; Gu L; Xie H
    Int J Med Robot; 2018 Dec; 14(6):e1943. PubMed ID: 30062697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.