These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23286093)

  • 21. Haptics and the heart: Force and tactile feedback system for cardiovascular interventions.
    Schecter S; Lin W; Gopal A; Fan R; Rashba E
    Cardiovasc Revasc Med; 2018 Sep; 19(6S):36-40. PubMed ID: 30017728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation.
    Wang Y; Guo S; Tamiya T; Hirata H; Ishihara H; Yin X
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization.
    Zhang L; Gu S; Guo S; Tamiya T
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Haptic virtual fixture for robotic cardiac catheter navigation.
    Park JW; Choi J; Park Y; Sun K
    Artif Organs; 2011 Nov; 35(11):1127-31. PubMed ID: 22023171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of catheter dynamics during percutaneous transluminal catheter procedures.
    Thakur Y; Holdsworth DW; Drangova M
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2140-3. PubMed ID: 19605309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A haptic unit designed for magnetic-resonance-guided biopsy.
    Tse ZT; Elhawary H; Rea M; Young I; Davis BL; Lamperth M
    Proc Inst Mech Eng H; 2009 Feb; 223(2):159-72. PubMed ID: 19278193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation.
    Schwein A; Kramer B; Chinnadurai P; Walker S; O'Malley M; Lumsden A; Bismuth J
    J Vasc Surg; 2017 Feb; 65(2):530-537. PubMed ID: 26994950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures.
    Polygerinos P; Ataollahi A; Schaeffter T; Razavi R; Seneviratne LD; Althoefer K
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):721-6. PubMed ID: 21118758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries.
    Bismuth J; Duran C; Stankovic M; Gersak B; Lumsden AB
    J Vasc Surg; 2013 Feb; 57(2 Suppl):14S-9S. PubMed ID: 23336849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tortuous iliac systems--a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?
    Riga CV; Bicknell CD; Hamady M; Cheshire N
    J Vasc Interv Radiol; 2012 Oct; 23(10):1369-75. PubMed ID: 22920731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A design of hardware haptic interface for gastrointestinal endoscopy simulation.
    Gu Y; Lee DY
    Stud Health Technol Inform; 2011; 163():199-201. PubMed ID: 21335788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remote controlled robot assisted cardiac navigation: feasibility assessment and validation in a porcine model.
    Ganji Y; Janabi-Sharifi F; Cheema AN
    Int J Med Robot; 2011 Dec; 7(4):489-95. PubMed ID: 22113981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.