BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23286125)

  • 1. A hierarchical scheme for geodesic anatomical labeling of airway trees.
    Feragen A; Petersen J; Owen M; Lo P; Thomsen LH; Wille MM; Dirksen A; de Bruijne M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):147-55. PubMed ID: 23286125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geodesic Atlas-Based Labeling of Anatomical Trees: Application and Evaluation on Airways Extracted From CT.
    Feragen A; Petersen J; Owen M; Pechin Lo ; Hohwu Thomsen L; Wille MM; Dirksen A; de Bruijne M
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1212-26. PubMed ID: 25532169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matching and anatomical labeling of human airway tree.
    Tschirren J; McLennan G; Palágyi K; Hoffman EA; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1540-7. PubMed ID: 16353371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric tree kernels: classification of COPD from airway tree geometry.
    Feragen A; Petersen J; Grimm D; Dirksen A; Pedersen JH; Borgwardt K; de Bruijne M
    Inf Process Med Imaging; 2013; 23():171-83. PubMed ID: 24683967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree-space statistics and approximations for large-scale analysis of anatomical trees.
    Feragen A; Owen M; Petersen J; Wille MM; Thomsen LH; Dirksen A; de Bruijne M
    Inf Process Med Imaging; 2013; 23():74-85. PubMed ID: 24683959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of intrathoracic airway trees: methods and validation.
    Palágyi K; Tschirren J; Sonka M
    Inf Process Med Imaging; 2003 Jul; 18():222-33. PubMed ID: 15344460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans.
    Rosell J; Cabras P
    Comput Med Imaging Graph; 2013; 37(7-8):430-7. PubMed ID: 23981684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of robust vascular tree matching: validation on liver.
    Charnoz A; Agnus V; Malandain G; Nicolau S; Tajine M; Soler L
    Inf Process Med Imaging; 2005; 19():443-55. PubMed ID: 17354716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans.
    van Ginneken B; Baggerman W; van Rikxoort EM
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):219-26. PubMed ID: 18979751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning COPD sensitive filters in pulmonary CT.
    Sørensen L; Lo P; Ashraf H; Sporring J; Nielsen M; de Bruijne M
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):699-706. PubMed ID: 20426173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided analysis of airway trees in micro-CT scans of ex vivo porcine lung tissue.
    Bauer C; Adam R; Stoltz DA; Beichel RR
    Comput Med Imaging Graph; 2012 Dec; 36(8):601-9. PubMed ID: 22959430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New software application assesses lung tissue damage.
    Radiol Technol; 2015; 86(5):563-4. PubMed ID: 25995405
    [No Abstract]   [Full Text] [Related]  

  • 14. CTA coronary labeling through efficient geodesics between trees using anatomy priors.
    Gülsün MA; Funka-Lea G; Zheng Y; Eckert M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):521-8. PubMed ID: 25485419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of pulmonary lobes robust against incomplete fissures.
    van Rikxoort EM; Prokop M; de Hoop B; Viergever MA; Pluim JP; van Ginneken B
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1286-96. PubMed ID: 20304724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of a New Integral-Based Half-Band Method for CT Measurement of Peripheral Airways in COPD With a Conventional Full-Width Half-Maximum Method Using Both Phantom and Clinical CT Images.
    Cho YH; Seo JB; Kim N; Lee HJ; Hwang HJ; Kim EY; Oh SY
    J Comput Assist Tomogr; 2015; 39(3):428-36. PubMed ID: 25700223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissimilarity-based classification of anatomical tree structures.
    Sørensen L; Lo P; Dirksen A; Petersen J; de Bruijne M
    Inf Process Med Imaging; 2011; 22():475-85. PubMed ID: 21761679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.
    Bian Z; Tan W; Yang J; Liu J; Zhao D
    Biomed Mater Eng; 2014; 24(6):3239-49. PubMed ID: 25227033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.
    Mori K; Ota S; Deguchi D; Kitasaka T; Suenaga Y; Iwano S; Hasegawa Y; Takabatake H; Mori M; Natori H
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):707-14. PubMed ID: 20426174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease.
    Petersen J; Nielsen M; Lo P; Nordenmark LH; Pedersen JH; Wille MM; Dirksen A; de Bruijne M
    Med Image Anal; 2014 Apr; 18(3):531-41. PubMed ID: 24603047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.