These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23286130)

  • 1. Group analysis of resting-state fMRI by hierarchical Markov random fields.
    Liu W; Awate SP; Fletcher PT
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):189-96. PubMed ID: 23286130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional network estimation method of resting-state fMRI using a hierarchical Markov random field.
    Liu W; Awate SP; Anderson JS; Fletcher PT
    Neuroimage; 2014 Oct; 100():520-34. PubMed ID: 24954282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-level bootstrap analysis of stable clusters in resting-state fMRI.
    Bellec P; Rosa-Neto P; Lyttelton OC; Benali H; Evans AC
    Neuroimage; 2010 Jul; 51(3):1126-39. PubMed ID: 20226257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting-state FMRI single subject cortical parcellation based on region growing.
    Blumensath T; Behrens TE; Smith SM
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):188-95. PubMed ID: 23286048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting-state fMRI can reliably map neural networks in children.
    Thomason ME; Dennis EL; Joshi AA; Joshi SH; Dinov ID; Chang C; Henry ML; Johnson RF; Thompson PM; Toga AW; Glover GH; Van Horn JD; Gotlib IH
    Neuroimage; 2011 Mar; 55(1):165-75. PubMed ID: 21134471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised learning of functional network dynamics in resting state fMRI.
    Eavani H; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    Inf Process Med Imaging; 2013; 23():426-37. PubMed ID: 24683988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of task-free/task-performance brain states.
    Zhang X; Guo L; Li X; Zhu D; Li K; Sun Z; Jin C; Hu X; Han J; Zhao Q; Li L; Liu T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):237-45. PubMed ID: 23286054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticorrelated networks in resting-state fMRI-BOLD data.
    Liu Y; Huang L; Li M; Zhou Z; Hu D
    Biomed Mater Eng; 2015; 26 Suppl 1():S1201-11. PubMed ID: 26405879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial regularization of functional connectivity using high-dimensional Markov random fields.
    Liu W; Zhu P; Anderson JS; Yurgelun-Todd D; Fletcher PT
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):363-70. PubMed ID: 20879336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning.
    Abraham A; Dohmatob E; Thirion B; Samaras D; Varoquaux G
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):607-15. PubMed ID: 24579191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic framework for brain connectivity from functional MR images.
    Rajapakse JC; Wang Y; Zheng X; Zhou J
    IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting brain activation in fMRI using group random walker.
    Ng B; Hamarneh G; Abugharbieh R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):331-8. PubMed ID: 20879332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separating 4D multi-task fMRI data of multiple subjects by independent component analysis with projection.
    Long Z; Li R; Wen X; Jin Z; Chen K; Yao L
    Magn Reson Imaging; 2013 Jan; 31(1):60-74. PubMed ID: 22898701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group-wise functional community detection through joint Laplacian diagonalization.
    Dodero L; Gozzi A; Liska A; Murino V; Sona D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):708-15. PubMed ID: 25485442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering.
    Chen H; Li K; Zhu D; Zhang T; Jin C; Guo L; Li L; Liu T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):297-304. PubMed ID: 23286143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures.
    Braun U; Plichta MM; Esslinger C; Sauer C; Haddad L; Grimm O; Mier D; Mohnke S; Heinz A; Erk S; Walter H; Seiferth N; Kirsch P; Meyer-Lindenberg A
    Neuroimage; 2012 Jan; 59(2):1404-12. PubMed ID: 21888983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.