BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23286247)

  • 1. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between the biotin carboxyl carrier domain and the biotin carboxylase domain in pyruvate carboxylase from Rhizobium etli.
    Lietzan AD; Menefee AL; Zeczycki TN; Kumar S; Attwood PV; Wallace JC; Cleland WW; St Maurice M
    Biochemistry; 2011 Nov; 50(45):9708-23. PubMed ID: 21958016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.
    Westerhold LE; Adams SL; Bergman HL; Zeczycki TN
    Biochemistry; 2016 Jun; 55(24):3447-60. PubMed ID: 27254467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM analysis reveals new insights into the mechanism of action of pyruvate carboxylase.
    Lasso G; Yu LP; Gil D; Xiang S; Tong L; Valle M
    Structure; 2010 Oct; 18(10):1300-10. PubMed ID: 20947019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A symmetrical tetramer for S. aureus pyruvate carboxylase in complex with coenzyme A.
    Yu LP; Xiang S; Lasso G; Gil D; Valle M; Tong L
    Structure; 2009 Jun; 17(6):823-32. PubMed ID: 19523900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the biotin carboxylase domain of pyruvate carboxylase from Bacillus thermodenitrificans.
    Kondo S; Nakajima Y; Sugio S; Sueda S; Islam MN; Kondo H
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):885-90. PubMed ID: 17642515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization.
    Chou CY; Tong L
    J Biol Chem; 2011 Jul; 286(27):24417-25. PubMed ID: 21592965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.
    Westerhold LE; Bridges LC; Shaikh SR; Zeczycki TN
    Biochemistry; 2017 Jul; 56(27):3492-3506. PubMed ID: 28617592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intra- and inter-species hybrid tetramers of pyruvate carboxylase: Biotin and the BCCP domain play a crucial role in determination of the kinetics and thermodynamics of catalysis.
    Rattanapornsompong K; Jitrapakdee S; Attwood PV
    Arch Biochem Biophys; 2020 Nov; 695():108630. PubMed ID: 33080172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved Glu40 and Glu433 of the biotin carboxylase domain of yeast pyruvate carboxylase I isoenzyme are essential for the association of tetramers.
    Jitrapakdee S; Surinya KH; Adina-Zada A; Polyak SW; Stojkoski C; Smyth R; Booker GW; Cleland WW; Attwood PV; Wallace JC
    Int J Biochem Cell Biol; 2007; 39(11):2120-34. PubMed ID: 17659996
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Shen J; Wu W; Wang K; Wu J; Liu B; Li C; Gong Z; Hong X; Fang H; Zhang X; Xu X
    mBio; 2024 May; 15(5):e0341423. PubMed ID: 38572988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct holoenzyme organization for two-subunit pyruvate carboxylase.
    Choi PH; Jo J; Lin YC; Lin MH; Chou CY; Dietrich LEP; Tong L
    Nat Commun; 2016 Oct; 7():12713. PubMed ID: 27708276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction.
    Xiang S; Tong L
    Nat Struct Mol Biol; 2008 Mar; 15(3):295-302. PubMed ID: 18297087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and inhibition of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Jitrapakdee S; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9694-707. PubMed ID: 21958066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is dimerization required for the catalytic activity of bacterial biotin carboxylase?
    Shen Y; Chou CY; Chang GG; Tong L
    Mol Cell; 2006 Jun; 22(6):807-818. PubMed ID: 16793549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases.
    Tong L
    Adv Protein Chem Struct Biol; 2017; 109():161-194. PubMed ID: 28683917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the catalytic roles of Arg548 and Gln552 in the carboxyl transferase domain of the Rhizobium etli pyruvate carboxylase by site-directed mutagenesis.
    Duangpan S; Jitrapakdee S; Adina-Zada A; Byrne L; Zeczycki TN; St Maurice M; Cleland WW; Wallace JC; Attwood PV
    Biochemistry; 2010 Apr; 49(15):3296-304. PubMed ID: 20230056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.