These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23286305)

  • 1. Chromatic aberration short-wave infrared spectroscopy: nanoparticle spectra without a spectrometer.
    Streit JK; Bachilo SM; Weisman RB
    Anal Chem; 2013 Feb; 85(3):1337-41. PubMed ID: 23286305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo Characterization of Short-Wave Infrared Optical Wavelengths for Biosensing Applications.
    Budidha K; Chatterjee S; Qassem M; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4285-4288. PubMed ID: 34892169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variance Spectroscopy.
    Streit JK; Bachilo SM; Sanchez SR; Lin CW; Weisman RB
    J Phys Chem Lett; 2015 Oct; 6(19):3976-81. PubMed ID: 26722902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo.
    Lin CW; Bachilo SM; Vu M; Beckingham KM; Bruce Weisman R
    Nanoscale; 2016 May; 8(19):10348-57. PubMed ID: 27140495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined influences of chromatic aberration and scattering in depth-resolved two-photon fluorescence endospectroscopy.
    Wu Y; Li X
    Biomed Opt Express; 2010 Oct; 1(4):1234-1243. PubMed ID: 21258545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional image sensing by chromatic confocal microscopy.
    Tiziani HJ; Uhde HM
    Appl Opt; 1994 Apr; 33(10):1838-43. PubMed ID: 20885516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse chromatic aberration and its numerical optimization in a metamaterial lens.
    Capecchi WJ; Behdad N; Volpe FA
    Opt Express; 2012 Apr; 20(8):8761-9. PubMed ID: 22513587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital infrared chromatic aberration correction algorithm for a membrane diffractive lens based on coherent imaging.
    Wu J; Li D; Cui A; Gao J; Zhou K; Liu B
    Appl Opt; 2022 Dec; 61(34):10080-10085. PubMed ID: 36606767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Wavebands selection for rice information extraction based on spectral bands inter-correlation].
    Wang FM; Huang JF; Xu JF; Wang XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1098-101. PubMed ID: 18720809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell.
    Baudoin JP; Jinschek JR; Boothroyd CB; Dunin-Borkowski RE; de Jonge N
    Microsc Microanal; 2013 Aug; 19(4):814-20. PubMed ID: 23659678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic compensation of chromatic aberration in a programmable diffractive lens.
    Millán MS; Otón J; Pérez-Cabré E
    Opt Express; 2006 Oct; 14(20):9103-12. PubMed ID: 19529291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camera processing with chromatic aberration.
    Korneliussen JT; Hirakawa K
    IEEE Trans Image Process; 2014 Oct; 23(10):4539-52. PubMed ID: 25163060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells.
    Cherukuri P; Bachilo SM; Litovsky SH; Weisman RB
    J Am Chem Soc; 2004 Dec; 126(48):15638-9. PubMed ID: 15571374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatic second harmonic imaging.
    Yang C; Shi K; Li H; Xu Q; Gopalan V; Liu Z
    Opt Express; 2010 Nov; 18(23):23837-43. PubMed ID: 21164728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging.
    Nagarajan S; Zhang Y
    Nanotechnology; 2011 Sep; 22(39):395101. PubMed ID: 21891842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.
    Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V
    Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated model-based calibration of short-wavelength infrared (SWIR) imaging spectrographs.
    Kosec M; Bürmen M; Tomaževič D; Pernuš F; Likar B
    Appl Spectrosc; 2012 Oct; 66(10):1128-35. PubMed ID: 23031695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optic large-depth 3D chromatic confocal endomicroscopy.
    Yang X; Wang Y; Zhang H; Qin H; Wang S; Tong Y; Zhou K; Sun R; Yue S; Chen X; Ding S; Wang P
    Biomed Opt Express; 2022 Jan; 13(1):300-313. PubMed ID: 35154872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.