These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Moriuchi T; Hirao T Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous formation of hydrophobic domains in isolated peptides. Gloaguen E; Loquais Y; Thomas JA; Pratt DW; Mons M J Phys Chem B; 2013 May; 117(17):4945-55. PubMed ID: 23551297 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
10. Variation of formal hydrogen-bonding networks within electronically delocalized π-conjugated oligopeptide nanostructures. Wall BD; Zhou Y; Mei S; Ardoña HA; Ferguson AL; Tovar JD Langmuir; 2014 Sep; 30(38):11375-85. PubMed ID: 25181015 [TBL] [Abstract][Full Text] [Related]
12. Role of hydrophobicity on self-assembly by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Langmuir; 2014 Jul; 30(26):7745-54. PubMed ID: 24915982 [TBL] [Abstract][Full Text] [Related]
13. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Reches M; Gazit E Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461 [TBL] [Abstract][Full Text] [Related]
14. Solvent effects on kinetic mechanisms of self-assembly by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Nguyen HD Langmuir; 2015; 31(1):315-24. PubMed ID: 25488898 [TBL] [Abstract][Full Text] [Related]
15. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics. Banerji B; Chatterjee M; Pal U; Maiti NC J Phys Chem B; 2017 Jul; 121(26):6367-6379. PubMed ID: 28593765 [TBL] [Abstract][Full Text] [Related]
16. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide. Guy MM; Voyer N Biophys Chem; 2012 Apr; 163-164():1-10. PubMed ID: 22386803 [TBL] [Abstract][Full Text] [Related]
17. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles. van Hell AJ; Klymchenko A; Burgers PP; Moret EE; Jiskoot W; Hennink WE; Crommelin DJ; Mastrobattista E J Phys Chem B; 2010 Sep; 114(34):11046-52. PubMed ID: 20687533 [TBL] [Abstract][Full Text] [Related]
18. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils. Zhao Y; Deng L; Wang J; Xu H; Lu JR Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of diacetylene-containing peptide building blocks and amphiphiles, their self-assembly and topochemical polymerization in organic solvents. Jahnke E; Weiss J; Neuhaus S; Hoheisel TN; Frauenrath H Chemistry; 2009; 15(2):388-404. PubMed ID: 19053106 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids. Subbalakshmi C; Manorama SV; Nagaraj R J Pept Sci; 2012 May; 18(5):283-92. PubMed ID: 22431418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]