BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23286316)

  • 21. Emission characteristics of granulated fuel produced from sewage sludge and coal slime.
    Wzorek M; Kozioł M; Scierski W
    J Air Waste Manag Assoc; 2010 Dec; 60(12):1487-93. PubMed ID: 21243903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.
    Chen L; Bhattacharya S
    Environ Sci Technol; 2013 Feb; 47(3):1729-34. PubMed ID: 23301852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taguchi approach for co-gasification optimization of torrefied biomass and coal.
    Chen WH; Chen CJ; Hung CI
    Bioresour Technol; 2013 Sep; 144():615-22. PubMed ID: 23907063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Technical design of an innovative biomass/gasification-driven power plant with heat recovery hybrid system: CO
    Wang Y; Xu H; Li Y; Lin N; Xu P
    Chemosphere; 2023 Nov; 340():139818. PubMed ID: 37586484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental impact of coal industry and thermal power plants in India.
    Mishra UC
    J Environ Radioact; 2004; 72(1-2):35-40. PubMed ID: 15162853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulation investigations into the influence of the mass ratio of pulverized-coal in fuel-rich flow to that in fuel-lean flow on the combustion and NO
    Li X; Zeng L; Liu H; Song M; Liu W; Han H; Zhang S; Chen Z; Li Z
    Environ Sci Pollut Res Int; 2020 May; 27(14):16900-16915. PubMed ID: 32144700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of multimode gas-fired combined-cycle chemical-looping combustion-based power plant layouts.
    Jayadevappa BR
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):54967-54987. PubMed ID: 35307797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.
    Sathre R; Masanet E
    Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-combustion of solid recovered fuels in coal-fired power plants.
    Thiel S; Thomé-Kozmiensky KJ
    Waste Manag Res; 2012 Apr; 30(4):392-403. PubMed ID: 22143900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.
    Diederichs GW; Ali Mandegari M; Farzad S; Görgens JF
    Bioresour Technol; 2016 Sep; 216():331-9. PubMed ID: 27259188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads.
    Zhang X; Li K; Zhang C; Wang A
    Waste Manag; 2020 Mar; 105():84-91. PubMed ID: 32035330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
    Suresh PV; Menon KG; Prakash KS; Prudhvi S; Anudeep A
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20111-20119. PubMed ID: 26564191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Baseload coal investment decisions under uncertain carbon legislation.
    Bergerson JA; Lave LB
    Environ Sci Technol; 2007 May; 41(10):3431-6. PubMed ID: 17547159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.
    Talati S; Zhai H; Morgan MG
    Environ Sci Technol; 2016 Dec; 50(23):12567-12574. PubMed ID: 27792308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States.
    Robinson AL; Rhodes JS; Keith DW
    Environ Sci Technol; 2003 Nov; 37(22):5081-9. PubMed ID: 14655692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.
    Dang Q; Mba Wright M; Brown RC
    Environ Sci Technol; 2015 Dec; 49(24):14688-95. PubMed ID: 26545153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of potential, cost, and environmental benefits of CCS-EWR technology for coal-fired power plants in Yellow River Basin of China.
    Xu M; Zhang X; Shen S; Wei S; Fan JL
    J Environ Manage; 2021 Aug; 292():112717. PubMed ID: 34015611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are renewables portfolio standards cost-effective emission abatement policy?
    Dobesova K; Apt J; Lave LB
    Environ Sci Technol; 2005 Nov; 39(22):8578-83. PubMed ID: 16323750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.
    Ko AS; Chang NB
    J Environ Manage; 2008 Jul; 88(1):11-27. PubMed ID: 17395362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.