These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 23286879)
1. Non-symbiotic hemoglobins in the life of seeds. Matilla AJ; Rodríguez-Gacio Mdel C Phytochemistry; 2013 Mar; 87():7-15. PubMed ID: 23286879 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Calvo-Begueria L; Cuypers B; Van Doorslaer S; Abbruzzetti S; Bruno S; Berghmans H; Dewilde S; Ramos J; Viappiani C; Becana M Front Plant Sci; 2017; 8():407. PubMed ID: 28421084 [TBL] [Abstract][Full Text] [Related]
4. Nonsymbiotic hemoglobins and stress tolerance in plants. Dordas C Plant Sci; 2009 Apr; 176(4):433-40. PubMed ID: 26493132 [TBL] [Abstract][Full Text] [Related]
6. Plant hemoglobins: what we know six decades after their discovery. Garrocho-Villegas V; Gopalasubramaniam SK; Arredondo-Peter R Gene; 2007 Aug; 398(1-2):78-85. PubMed ID: 17540516 [TBL] [Abstract][Full Text] [Related]
8. Plant hemoglobins: important players at the crossroads between oxygen and nitric oxide. Gupta KJ; Hebelstrup KH; Mur LA; Igamberdiev AU FEBS Lett; 2011 Dec; 585(24):3843-9. PubMed ID: 22036787 [TBL] [Abstract][Full Text] [Related]
9. Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. Ross EJ; Shearman L; Mathiesen M; Zhou YJ; Arredondo-Peter R; Sarath G; Klucas RV Protoplasma; 2001; 218(3-4):125-33. PubMed ID: 11770429 [TBL] [Abstract][Full Text] [Related]
10. Effect of the synthesis of rice non-symbiotic hemoglobins 1 and 2 in the recombinant Escherichia coli TB1 growth. Álvarez-Salgado E; Arredondo-Peter R F1000Res; 2015; 4():1053. PubMed ID: 26973784 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of a caesalpinoid (Chamaecrista fasciculata) hemoglobin: the structural transition from a nonsymbiotic hemoglobin to a leghemoglobin. Gopalasubramaniam SK; Kovacs F; Violante-Mota F; Twigg P; Arredondo-Peter R; Sarath G Proteins; 2008 Jul; 72(1):252-60. PubMed ID: 18214970 [TBL] [Abstract][Full Text] [Related]
12. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. Sainz M; Pérez-Rontomé C; Ramos J; Mulet JM; James EK; Bhattacharjee U; Petrich JW; Becana M Plant J; 2013 Dec; 76(5):875-87. PubMed ID: 24118423 [TBL] [Abstract][Full Text] [Related]
13. Prediction of folding pathway and kinetics among plant hemoglobins using an average distance map method. Nakajima S; Alvarez-Salgado E; Kikuchi T; Arredondo-Peter R Proteins; 2005 Nov; 61(3):500-6. PubMed ID: 16184600 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of rice (Oryza sativa) seeds during germination. Yang P; Li X; Wang X; Chen H; Chen F; Shen S Proteomics; 2007 Sep; 7(18):3358-68. PubMed ID: 17849412 [TBL] [Abstract][Full Text] [Related]
15. Trema and parasponia hemoglobins reveal convergent evolution of oxygen transport in plants. Sturms R; Kakar S; Trent J; Hargrove MS Biochemistry; 2010 May; 49(19):4085-93. PubMed ID: 20377207 [TBL] [Abstract][Full Text] [Related]
16. First off the mark: early seed germination. Weitbrecht K; Müller K; Leubner-Metzger G J Exp Bot; 2011 Jun; 62(10):3289-309. PubMed ID: 21430292 [TBL] [Abstract][Full Text] [Related]
17. An extracellular lipid transfer protein is relocalized intracellularly during seed germination. Pagnussat L; Burbach C; Baluska F; de la Canal L J Exp Bot; 2012 Nov; 63(18):6555-63. PubMed ID: 23162115 [TBL] [Abstract][Full Text] [Related]
18. Quaternary structure effects on the hexacoordination equilibrium in rice hemoglobin rHb1: insights from molecular dynamics simulations. Morzan UN; Capece L; Marti MA; Estrin DA Proteins; 2013 May; 81(5):863-73. PubMed ID: 23280541 [TBL] [Abstract][Full Text] [Related]
19. Structural and functional properties of class 1 plant hemoglobins. Igamberdiev AU; Bykova NV; Hill RD IUBMB Life; 2011 Mar; 63(3):146-52. PubMed ID: 21445844 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata. Lin CH; Peng PH; Ko CY; Markhart AH; Lin TY Plant Cell Physiol; 2012 May; 53(5):930-42. PubMed ID: 22440330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]