BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23286883)

  • 1. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C.
    Conway W; Fernandes D; Beyad Y; Burns R; Lawrance G; Puxty G; Maeder M
    J Phys Chem A; 2013 Feb; 117(5):806-13. PubMed ID: 23286883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2013 Jan; 47(2):1163-9. PubMed ID: 23190202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward rational design of amine solutions for PCC applications: the kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2012 Jul; 46(13):7422-9. PubMed ID: 22620675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution.
    McCann N; Phan D; Wang X; Conway W; Burns R; Attalla M; Puxty G; Maeder M
    J Phys Chem A; 2009 Apr; 113(17):5022-9. PubMed ID: 19338322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Chemical Mechanism for CO
    Yu B; Li L; Yu H; Maeder M; Puxty G; Yang Q; Feron P; Conway W; Chen Z
    Environ Sci Technol; 2018 Jan; 52(2):916-926. PubMed ID: 29216429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of N-nitrosopiperazine formation from nitrite and piperazine in CO2 capture.
    Goldman MJ; Fine NA; Rochelle GT
    Environ Sci Technol; 2013 Apr; 47(7):3528-34. PubMed ID: 23438967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of removal of carbon dioxide by aqueous solutions of N,N-diethylethanolamine and piperazine.
    Konduru PB; Vaidya PD; Kenig EY
    Environ Sci Technol; 2010 Mar; 44(6):2138-43. PubMed ID: 20151656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the reversible reaction of CO2(aq) and HCO3(-) with sarcosine salt in aqueous solution.
    Xiang Q; Fang M; Yu H; Maeder M
    J Phys Chem A; 2012 Oct; 116(42):10276-84. PubMed ID: 22992127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational investigation of the nitrosation mechanism of piperazine in CO
    Yu Q; Wang P; Ma F; Xie HB; He N; Chen J
    Chemosphere; 2017 Nov; 186():341-349. PubMed ID: 28800535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved solvent formulations for efficient CO₂ absorption and low-temperature desorption.
    Barzagli F; Di Vaira M; Mani F; Peruzzini M
    ChemSusChem; 2012 Sep; 5(9):1724-31. PubMed ID: 22778091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive kinetic and thermodynamic study of the reactions of CO2(aq) and HCO3(-) with monoethanolamine (MEA) in aqueous solution.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    J Phys Chem A; 2011 Dec; 115(50):14340-9. PubMed ID: 22035132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2-water system.
    Rudolph WW; Fischer D; Irmer G
    Appl Spectrosc; 2006 Feb; 60(2):130-44. PubMed ID: 16542564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward rational design of amines for CO2 capture: Substituent effect on kinetic process for the reaction of monoethanolamine with CO2.
    Xie H; Wang P; He N; Yang X; Chen J
    J Environ Sci (China); 2015 Nov; 37():75-82. PubMed ID: 26574090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration.
    Dai N; Shah AD; Hu L; Plewa MJ; McKague B; Mitch WA
    Environ Sci Technol; 2012 Sep; 46(17):9793-801. PubMed ID: 22831707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the reversible reaction of CO2(aq) with ammonia in aqueous solution.
    Wang X; Conway W; Fernandes D; Lawrance G; Burns R; Puxty G; Maeder M
    J Phys Chem A; 2011 Jun; 115(24):6405-12. PubMed ID: 21598925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.
    Lin CC; Lin YH; Tan CS
    J Hazard Mater; 2010 Mar; 175(1-3):344-51. PubMed ID: 19910115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental study on CO2 absorption by aqueous ammonia-based blended absorbent].
    Xia ZX; Xiang QY; Zhou XP; Fang MX
    Huan Jing Ke Xue; 2014 Jul; 35(7):2508-14. PubMed ID: 25244831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based analysis for kinetic complexation study of Pizda and Cu(II).
    Vosough M; Maeder M; Jalali-Heravi M; Norman SE
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Aug; 70(3):674-81. PubMed ID: 18280775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.
    Puxty G; Rowland R
    Environ Sci Technol; 2011 Mar; 45(6):2398-405. PubMed ID: 21329341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.