BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23286895)

  • 1. Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement.
    Kim S; Dawson KW; Gelfand BS; Taylor JM; Shimizu GK
    J Am Chem Soc; 2013 Jan; 135(3):963-6. PubMed ID: 23286895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving Superprotonic Conduction in Metal-Organic Frameworks through Iterative Design Advances.
    Kim S; Joarder B; Hurd JA; Zhang J; Dawson KW; Gelfand BS; Wong NE; Shimizu GKH
    J Am Chem Soc; 2018 Jan; 140(3):1077-1082. PubMed ID: 29272575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications.
    Taylor JM; Dawson KW; Shimizu GK
    J Am Chem Soc; 2013 Jan; 135(4):1193-6. PubMed ID: 23305324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework.
    Sadakiyo M; Yamada T; Kitagawa H
    J Am Chem Soc; 2014 Sep; 136(38):13166-9. PubMed ID: 25197769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material.
    Dey C; Kundu T; Banerjee R
    Chem Commun (Camb); 2012 Jan; 48(2):266-8. PubMed ID: 22089174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework.
    Hurd JA; Vaidhyanathan R; Thangadurai V; Ratcliffe CI; Moudrakovski IL; Shimizu GK
    Nat Chem; 2009 Dec; 1(9):705-10. PubMed ID: 21124357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational designs for highly proton-conductive metal-organic frameworks.
    Sadakiyo M; Yamada T; Kitagawa H
    J Am Chem Soc; 2009 Jul; 131(29):9906-7. PubMed ID: 19621952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High proton conduction at above 100 °C mediated by hydrogen bonding in a lanthanide metal-organic framework.
    Tang Q; Liu Y; Liu S; He D; Miao J; Wang X; Yang G; Shi Z; Zheng Z
    J Am Chem Soc; 2014 Sep; 136(35):12444-9. PubMed ID: 25137095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology.
    Sahoo SC; Kundu T; Banerjee R
    J Am Chem Soc; 2011 Nov; 133(44):17950-8. PubMed ID: 21919488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic "Free Diffusion inside a Sphere".
    Pili S; Argent SP; Morris CG; Rought P; García-Sakai V; Silverwood IP; Easun TL; Li M; Warren MR; Murray CA; Tang CC; Yang S; Schröder M
    J Am Chem Soc; 2016 May; 138(20):6352-5. PubMed ID: 27182787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction.
    Panda T; Kundu T; Banerjee R
    Chem Commun (Camb); 2012 Jun; 48(44):5464-6. PubMed ID: 22538292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel low density metal-organic framework with pcu topology by dendritic ligand.
    Jia J; Sun F; Fang Q; Liang X; Cai K; Bian Z; Zhao H; Gao L; Zhu G
    Chem Commun (Camb); 2011 Aug; 47(32):9167-9. PubMed ID: 21755073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tetranuclear Cu4(μ3-OH)2-based metal-organic framework (MOF) with sulfonate-carboxylate ligands for proton conduction.
    Dong XY; Wang R; Li JB; Zang SQ; Hou HW; Mak TC
    Chem Commun (Camb); 2013 Nov; 49(90):10590-2. PubMed ID: 24092457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent proton conducting behavior in a metal-organic framework material.
    Phang WJ; Lee WR; Yoo K; Ryu DW; Kim B; Hong CS
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8383-7. PubMed ID: 24986637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.
    Sanda S; Biswas S; Konar S
    Inorg Chem; 2015 Feb; 54(4):1218-22. PubMed ID: 25594401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework.
    Taylor JM; Mah RK; Moudrakovski IL; Ratcliffe CI; Vaidhyanathan R; Shimizu GK
    J Am Chem Soc; 2010 Oct; 132(40):14055-7. PubMed ID: 20857972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent surface modification of a metal-organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition.
    Gadzikwa T; Lu G; Stern CL; Wilson SR; Hupp JT; Nguyen ST
    Chem Commun (Camb); 2008 Nov; (43):5493-5. PubMed ID: 18997929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-coupled electron transfer from a luminescent excited state.
    Freys JC; Bernardinelli G; Wenger OS
    Chem Commun (Camb); 2008 Sep; (36):4267-9. PubMed ID: 18802539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpenetrating polyhedral MOF with a primitive cubic network based on supermolecular building blocks constructed of a semirigid C3-symmetric carboxylate ligand.
    Zhao X; He H; Hu T; Dai F; Sun D
    Inorg Chem; 2009 Sep; 48(17):8057-9. PubMed ID: 19715368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled arrays of polyoxometalate-based metal-organic nanotubes for proton conduction and magnetism.
    Jiao YQ; Zang HY; Wang XL; Zhou EL; Song BQ; Wang CG; Shao KZ; Su ZM
    Chem Commun (Camb); 2015 Jun; 51(56):11313-6. PubMed ID: 26084516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.