These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 23287019)
21. Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. Gutkovich YE; Ofir R; Elkouby YM; Dibner C; Gefen A; Elias S; Frank D Dev Biol; 2010 Feb; 338(1):50-62. PubMed ID: 19944089 [TBL] [Abstract][Full Text] [Related]
22. Refinement of gene expression patterns in the early Xenopus embryo. Wardle FC; Smith JC Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341 [TBL] [Abstract][Full Text] [Related]
23. Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. Taylor JJ; Wang T; Kroll KL Dev Biol; 2006 Jan; 289(2):494-506. PubMed ID: 16337935 [TBL] [Abstract][Full Text] [Related]
24. Developmental Expression of Ectonucleotidase and Purinergic Receptors Detection by Whole-Mount In Situ Hybridization in Xenopus Embryos. Blanchard C; Massé K Methods Mol Biol; 2020; 2041():87-106. PubMed ID: 31646482 [TBL] [Abstract][Full Text] [Related]
25. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis. Kiem LM; Dietmann P; Linnemann A; Schmeisser MJ; Kühl SJ Dev Biol; 2017 Mar; 423(1):66-76. PubMed ID: 28104388 [TBL] [Abstract][Full Text] [Related]
26. Cloning and developmental expression of Xenopus Enabled (Xena). Xanthos JB; Wanner SJ; Miller JR Dev Dyn; 2005 Jun; 233(2):631-7. PubMed ID: 15778995 [TBL] [Abstract][Full Text] [Related]
27. Possible regulation of Oct60 transcription by a positive feedback loop in Xenopus oocytes. Morichika K; Sugimoto M; Yasuda K; Kinoshita T Zygote; 2014 May; 22(2):266-74. PubMed ID: 23186935 [TBL] [Abstract][Full Text] [Related]
28. Expression pattern of zcchc24 during early Xenopus development. Vitorino M; Correia E; Serralheiro AR; De-Jesus AC; Inácio JM; Belo JA Int J Dev Biol; 2014; 58(1):45-50. PubMed ID: 24860994 [TBL] [Abstract][Full Text] [Related]
29. Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis. Luque ME; Crespo PM; Mónaco ME; Aybar MJ; Daniotti JL; Sánchez SS Dev Dyn; 2008 Jan; 237(1):112-23. PubMed ID: 18095347 [TBL] [Abstract][Full Text] [Related]
30. Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates. Faucheux C; Naye F; Tréguer K; Fédou S; Thiébaud P; Théze N Int J Dev Biol; 2010; 54(8-9):1375-82. PubMed ID: 20712000 [TBL] [Abstract][Full Text] [Related]
31. Expression of RhoB in the developing Xenopus laevis embryo. Vignal E; de Santa Barbara P; Guémar L; Donnay JM; Fort P; Faure S Gene Expr Patterns; 2007 Jan; 7(3):282-8. PubMed ID: 17049930 [TBL] [Abstract][Full Text] [Related]
32. Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. Dichmann DS; Fletcher RB; Harland RM Dev Dyn; 2008 Jul; 237(7):1755-66. PubMed ID: 18521943 [TBL] [Abstract][Full Text] [Related]
33. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning. Curran KL; Grainger RM Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome analysis of regeneration during Xenopus laevis experimental twinning. Sosa EA; Moriyama Y; Ding Y; Tejeda-Muñoz N; Colozza G; De Robertis EM Int J Dev Biol; 2019; 63(6-7):301-309. PubMed ID: 31250914 [TBL] [Abstract][Full Text] [Related]
35. Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development. Nakajo N; Deno YK; Ueno H; Kenmochi C; Shimuta K; Sagata N Int J Dev Biol; 2011; 55(6):627-32. PubMed ID: 21948711 [TBL] [Abstract][Full Text] [Related]
36. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo. Moepps B; Braun M; Knöpfle K; Dillinger K; Knöchel W; Gierschik P Eur J Immunol; 2000 Oct; 30(10):2924-34. PubMed ID: 11069075 [TBL] [Abstract][Full Text] [Related]
37. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development. Seigfried FA; Dietmann P; Kühl M; Kühl SJ Gene Expr Patterns; 2018 Jun; 28():54-61. PubMed ID: 29462671 [TBL] [Abstract][Full Text] [Related]
38. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism. Haramoto Y; Takahashi S; Oshima T; Onuma Y; Ito Y; Asashima M Sci Rep; 2015 Jun; 5():11603. PubMed ID: 26112133 [TBL] [Abstract][Full Text] [Related]
39. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis. Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684 [TBL] [Abstract][Full Text] [Related]
40. Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development. Xia YJ; Zhao SH; Mao BY Dongwuxue Yanjiu; 2012 Dec; 33(E5-6):E82-8. PubMed ID: 23266986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]