These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23287457)

  • 1. Oxidative regulation of the Na+ -K+ pump in cardiac physiology and pathology: clarifying the published evidence.
    Figtree GA; Rasmussen HH; Liu CC
    Circ Res; 2013 Jan; 112(1):e1. PubMed ID: 23287457
    [No Abstract]   [Full Text] [Related]  

  • 2. Response to "Detailed aspects of redox signaling in cardiac physiology and pathology".
    Burgoyne JR; Din HM; Eaton P; Shah AM
    Circ Res; 2013 Jan; 112(1):e2. PubMed ID: 23409289
    [No Abstract]   [Full Text] [Related]  

  • 3. Redox signaling in cardiac physiology and pathology.
    Burgoyne JR; Mongue-Din H; Eaton P; Shah AM
    Circ Res; 2012 Sep; 111(8):1091-106. PubMed ID: 23023511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of NADPH oxidases in cardiac remodelling and heart failure.
    Sirker A; Zhang M; Murdoch C; Shah AM
    Am J Nephrol; 2007; 27(6):649-60. PubMed ID: 17901689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling pathways for cardiac hypertrophy and failure.
    Hunter JJ; Chien KR
    N Engl J Med; 1999 Oct; 341(17):1276-83. PubMed ID: 10528039
    [No Abstract]   [Full Text] [Related]  

  • 6. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.
    Bundgaard H; Liu CC; Garcia A; Hamilton EJ; Huang Y; Chia KK; Hunyor SN; Figtree GA; Rasmussen HH
    Circulation; 2010 Dec; 122(25):2699-708. PubMed ID: 21135361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel pathogenetic mechanisms in myocarditis: nitric oxide signaling.
    Kittleson MM; Lowenstein CJ; Hare JM
    Heart Fail Clin; 2005 Oct; 1(3):345-61. PubMed ID: 17386859
    [No Abstract]   [Full Text] [Related]  

  • 8. NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure.
    Murdoch CE; Zhang M; Cave AC; Shah AM
    Cardiovasc Res; 2006 Jul; 71(2):208-15. PubMed ID: 16631149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling.
    Galougahi KK; Liu CC; Bundgaard H; Rasmussen HH
    Trends Cardiovasc Med; 2012 May; 22(4):83-7. PubMed ID: 23040838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase cascades in the regulation of cardiac hypertrophy.
    Dorn GW; Force T
    J Clin Invest; 2005 Mar; 115(3):527-37. PubMed ID: 15765134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Double-edged sword effect of PKC during myocardial hypertrophy].
    Yu ZB; Wang YY; Zhang R
    Sheng Li Ke Xue Jin Zhan; 2007 Oct; 38(4):339-42. PubMed ID: 18232306
    [No Abstract]   [Full Text] [Related]  

  • 12. Myostatin, the cardiac chalone of insulin-like growth factor-1.
    Gaussin V; Depre C
    Cardiovasc Res; 2005 Dec; 68(3):347-9. PubMed ID: 16226233
    [No Abstract]   [Full Text] [Related]  

  • 13. Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy.
    Kim YK; Suarez J; Hu Y; McDonough PM; Boer C; Dix DJ; Dillmann WH
    Circulation; 2006 Jun; 113(22):2589-97. PubMed ID: 16735677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative inotropic effects of C-type natriuretic peptide are attenuated in hypertrophied ventricular myocytes associated with reduced cyclic GMP production.
    Moalem J; Davidov T; Zhang Q; Grover GJ; Weiss HR; Scholz PM
    J Surg Res; 2006 Sep; 135(1):38-44. PubMed ID: 16600302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretching to meet needs: integrin-linked kinase and the cardiac pump.
    Srivastava D; Yu S
    Genes Dev; 2006 Sep; 20(17):2327-31. PubMed ID: 16951248
    [No Abstract]   [Full Text] [Related]  

  • 16. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition.
    Liu Y; Liu Y; Liu X; Chen J; Zhang K; Huang F; Wang JF; Tang W; Huang H
    J Am Heart Assoc; 2015 Jun; 4(7):. PubMed ID: 26109504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)--Ca2+ exchange in the regulation of cardiac excitation-contraction coupling.
    Reuter H; Pott C; Goldhaber JI; Henderson SA; Philipson KD; Schwinger RH
    Cardiovasc Res; 2005 Aug; 67(2):198-207. PubMed ID: 15935336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and cardiac hypertrophy: a review.
    Maulik SK; Kumar S
    Toxicol Mech Methods; 2012 Jun; 22(5):359-66. PubMed ID: 22394344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small changes can make a big difference - microRNA regulation of cardiac hypertrophy.
    Gladka MM; da Costa Martins PA; De Windt LJ
    J Mol Cell Cardiol; 2012 Jan; 52(1):74-82. PubMed ID: 21971075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nrf2 protects against maladaptive cardiac responses to hemodynamic stress.
    Li J; Ichikawa T; Villacorta L; Janicki JS; Brower GL; Yamamoto M; Cui T
    Arterioscler Thromb Vasc Biol; 2009 Nov; 29(11):1843-50. PubMed ID: 19592468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.