BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23287526)

  • 1. Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects.
    James C; Macefield VG; Henderson LA
    Neuroimage; 2013 Apr; 70():59-65. PubMed ID: 23287526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea.
    Fatouleh RH; Hammam E; Lundblad LC; Macey PM; McKenzie DK; Henderson LA; Macefield VG
    Neuroimage Clin; 2014; 6():275-83. PubMed ID: 25379440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP.
    Fatouleh RH; Lundblad LC; Macey PM; McKenzie DK; Henderson LA; Macefield VG
    Neuroimage Clin; 2015; 7():799-806. PubMed ID: 26082888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects.
    Macefield VG; Henderson LA
    J Neurophysiol; 2016 Sep; 116(3):1199-207. PubMed ID: 27334958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of sites of sympathetic outflow at rest and during emotional arousal: concurrent recordings of sympathetic nerve activity and fMRI of the brain.
    Macefield VG; James C; Henderson LA
    Int J Psychophysiol; 2013 Sep; 89(3):451-9. PubMed ID: 23770086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI.
    Macefield VG; Henderson LA
    Front Neurosci; 2019; 13():1369. PubMed ID: 32038124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time imaging of the medullary circuitry involved in the generation of spontaneous muscle sympathetic nerve activity in awake subjects.
    Macefield VG; Henderson LA
    Hum Brain Mapp; 2010 Apr; 31(4):539-49. PubMed ID: 19777579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural sites involved in the sustained increase in muscle sympathetic nerve activity induced by inspiratory capacity apnea: a fMRI study.
    Macefield VG; Gandevia SC; Henderson LA
    J Appl Physiol (1985); 2006 Jan; 100(1):266-73. PubMed ID: 16123207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time imaging of brain areas involved in the generation of spontaneous skin sympathetic nerve activity at rest.
    James C; Henderson L; Macefield VG
    Neuroimage; 2013 Jul; 74():188-94. PubMed ID: 23485741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain.
    Kobuch S; Fazalbhoy A; Brown R; Macefield VG; Henderson LA
    Brain Behav; 2018 Mar; 8(3):e00888. PubMed ID: 29541532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans.
    Kimmerly DS; O'Leary DD; Menon RS; Gati JS; Shoemaker JK
    J Physiol; 2005 Nov; 569(Pt 1):331-45. PubMed ID: 16150800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apnea-induced cortical BOLD-fMRI and peripheral sympathoneural firing response patterns of awake healthy humans.
    Kimmerly DS; Morris BL; Floras JS
    PLoS One; 2013; 8(12):e82525. PubMed ID: 24358198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in regional grey matter volume of the brain are related to mean blood pressure and muscle sympathetic nerve activity in normotensive humans.
    Kobuch S; Fatouleh RH; Macefield JM; Henderson LA; Macefield VG
    J Hypertens; 2020 Feb; 38(2):303-313. PubMed ID: 31568059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central circuitry responsible for the divergent sympathetic responses to tonic muscle pain in humans.
    Kobuch S; Fazalbhoy A; Brown R; Henderson LA; Macefield VG
    Hum Brain Mapp; 2017 Feb; 38(2):869-881. PubMed ID: 27696604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the human sympathetic connectome involved in blood pressure regulation.
    Macefield VG; Henderson LA
    Neuroimage; 2019 Nov; 202():116119. PubMed ID: 31446130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting regional brain activity and connectivity vary with resting blood pressure but not muscle sympathetic nerve activity in normotensive humans: An exploratory study.
    Kobuch S; Macefield VG; Henderson LA
    J Cereb Blood Flow Metab; 2019 Dec; 39(12):2433-2444. PubMed ID: 30182800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and brain stem changes in neural activity during static handgrip and postexercise ischemia in humans.
    Sander M; Macefield VG; Henderson LA
    J Appl Physiol (1985); 2010 Jun; 108(6):1691-700. PubMed ID: 20185626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time imaging of cortical areas involved in the generation of increases in skin sympathetic nerve activity when viewing emotionally charged images.
    Henderson LA; Stathis A; James C; Brown R; McDonald S; Macefield VG
    Neuroimage; 2012 Aug; 62(1):30-40. PubMed ID: 22580171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventral medial prefrontal cortex and cardiovagal control in conscious humans.
    Wong SW; Massé N; Kimmerly DS; Menon RS; Shoemaker JK
    Neuroimage; 2007 Apr; 35(2):698-708. PubMed ID: 17291781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sympathetic microneurography.
    Macefield VG
    Handb Clin Neurol; 2013; 117():353-64. PubMed ID: 24095138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.