These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 23287913)
1. Influence of shell properties on high-frequency ultrasound imaging and drug delivery using polymer-shelled microbubbles. Chitnis PV; Koppolu S; Mamou J; Chlon C; Ketterling JA IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):53-64. PubMed ID: 23287913 [TBL] [Abstract][Full Text] [Related]
2. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents. Koppolu S; Chitnis PV; Mamou J; Allen JS; Ketterling JA IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):494-501. PubMed ID: 25935932 [TBL] [Abstract][Full Text] [Related]
3. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure. Chitnis PV; Lee P; Mamou J; Allen JS; Böhmer M; Ketterling JA J Appl Phys; 2011 Apr; 109(8):84906-8490610. PubMed ID: 21580800 [TBL] [Abstract][Full Text] [Related]
4. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles. Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310 [TBL] [Abstract][Full Text] [Related]
5. Subharmonic analysis using singular-value decomposition of ultrasound contrast agents. Mamou J; Ketterling JA J Acoust Soc Am; 2009 Jun; 125(6):4078-91. PubMed ID: 19507989 [TBL] [Abstract][Full Text] [Related]
6. Characterisation of polymer shelled microbubbles in wall less flow phantom using high frequency ultrasound and video microscopy. Chitnis PV; Lee P; Dayton PA; Mamou J; Ketterling JA Bubble Sci Eng Technol; 2011 Nov; 3(2):73-78. PubMed ID: 23795208 [TBL] [Abstract][Full Text] [Related]
7. Ambient Pressure Sensitivity of the Subharmonic Response of Coated Microbubbles: Effects of Acoustic Excitation Parameters. Azami RH; Forsberg F; Eisenbrey JR; Sarkar K Ultrasound Med Biol; 2023 Jul; 49(7):1550-1560. PubMed ID: 37100673 [TBL] [Abstract][Full Text] [Related]
8. Simulation of noninvasive blood pressure estimation using ultrasound contrast agent microbubbles. Li F; Wang L; Fan Y; Li D IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):715-26. PubMed ID: 22547282 [TBL] [Abstract][Full Text] [Related]
9. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®. Ivory AM; Meaney JF; Fagan AJ; Browne JE Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334 [TBL] [Abstract][Full Text] [Related]
10. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Radhakrishnan K; Bader KB; Haworth KJ; Kopechek JA; Raymond JL; Huang SL; McPherson DD; Holland CK Phys Med Biol; 2013 Sep; 58(18):6541-63. PubMed ID: 24002637 [TBL] [Abstract][Full Text] [Related]
11. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation. Daeichin V; van Rooij T; Skachkov I; Ergin B; Specht PA; Lima A; Ince C; Bosch JG; van der Steen AF; de Jong N; Kooiman K IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):555-567. PubMed ID: 28113312 [TBL] [Abstract][Full Text] [Related]
12. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field. Qiao Y; Cao H; Zhang S; Yin H; Wan M Ultrason Sonochem; 2013 Jan; 20(1):162-70. PubMed ID: 22819330 [TBL] [Abstract][Full Text] [Related]
13. Sub-harmonic response from polymer-shelled contrast agents with a 40-MHz excitation. Ketterling JA; Mamou J J Acoust Soc Am; 2008 May; 123(5):3110. PubMed ID: 18529747 [TBL] [Abstract][Full Text] [Related]
14. Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents. Raymond JL; Haworth KJ; Bader KB; Radhakrishnan K; Griffin JK; Huang SL; McPherson DD; Holland CK Ultrasound Med Biol; 2014 Feb; 40(2):410-21. PubMed ID: 24262056 [TBL] [Abstract][Full Text] [Related]
15. Subharmonic Response of Polymer Contrast Agents Based on the Empirical Mode Decomposition. Hayashi R; Allen JS; Chitnis PV; Mamou J; Ketterling JA IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2107-2113. PubMed ID: 27913328 [TBL] [Abstract][Full Text] [Related]
16. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles. Guo X; Li Q; Zhang Z; Zhang D; Tu J J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202 [TBL] [Abstract][Full Text] [Related]
17. Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging. Shekhar H; Rychak JJ; Doyley MM Med Phys; 2013 Aug; 40(8):082903. PubMed ID: 23927358 [TBL] [Abstract][Full Text] [Related]
18. Stable and transient subharmonic emissions from isolated contrast agent microbubbles. Biagi E; Breschi L; Vannacci E; Masotti L IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):480-97. PubMed ID: 17375818 [TBL] [Abstract][Full Text] [Related]
19. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Capece S; Chiessi E; Cavalli R; Giustetto P; Grishenkov D; Paradossi G Chem Commun (Camb); 2013 Jun; 49(51):5763-5. PubMed ID: 23689681 [TBL] [Abstract][Full Text] [Related]
20. Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles. Faez T; Renaud G; Defontaine M; Calle S; de Jong N Phys Med Biol; 2011 Oct; 56(19):6459-73. PubMed ID: 21934190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]