These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23287918)

  • 41. Analysis of nonaxisymmetric vibration mode piezoelectric annular plate and its application to an ultrasonic motor.
    Takano T; Hirata H; Tomikawa Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):558-65. PubMed ID: 18285078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.
    Liu Y; Chen W; Liu J; Shi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):777-85. PubMed ID: 23549538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A miniaturization of the multi-degree-of-freedom ultrasonic actuator using a small cylinder fixed on a substrate.
    Gouda Y; Nakamura K; Ueha S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e617-20. PubMed ID: 16793097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergetic driving concepts for bundled miniature ultrasonic linear motors.
    Mracek M; Hemsel T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e597-602. PubMed ID: 16824572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Rotary Traveling Wave Ultrasonic Motor With Four Groups of Nested PZT Ceramics: Design and Performance Evaluation.
    Ma X; Liu J; Deng J; Liu Q; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1462-1469. PubMed ID: 32054574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and Characterization of a Microscale Piezoelectric Vibrator Based on Electrohydrodynamic Jet Printed PZT Thick Film.
    Wang D; Zhao K; Yuan Y; Wang Z; Zong H; Zhang X; Liang J
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Piezoelectric ultrasonic motor using longitudinal-torsional composite resonance vibration.
    Ohnishi O; Myohga O; Uchikawa T; Tamegai M; Inoue T; Takahashi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):687-93. PubMed ID: 18263235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Same phase drive-type ultrasonic motors using two degenerate bending vibration modes of a disk.
    Takano T; Tomikawa Y; Kusakabe C
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):180-6. PubMed ID: 18263135
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resonant-type inertia linear piezoelectric motor based on a synchronized switching stimulated by harmonic synthesized mechanical square wave.
    He L; Cheng Z; Xu L; Li X; Ge X; Chen J; Han J
    Rev Sci Instrum; 2020 Aug; 91(8):085003. PubMed ID: 32872959
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations.
    Xu D; Yang W; Zhang X; Yu S
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and Dynamic Simulation of a Novel Traveling Wave Linear Ultrasonic Motor.
    Yang L; Yao K; Ren W; Chen L; Yang M; Zhao R; Tang S
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bending Vibration Characteristics of a Novel Piezoelectric Composite Trilaminar Vibrator.
    Lv N; Zhong C; Wang J; Wang L
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209101
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure.
    Wang L; Liu J; Liu Y; Tian X; Yan J
    Ultrasonics; 2018 Sep; 89():137-142. PubMed ID: 29803112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An Ultrasonic Motor Using a Carbon-Fiber-Reinforced/Poly-Phenylene-Sulfide-Based Vibrator with Bending/Longitudinal Modes.
    Ding Z; Wei W; Wang K; Liu Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A cylindrical traveling wave ultrasonic motor using bonded-type composite beam.
    Yang X; Liu Y; Chen W; Liu J
    Ultrasonics; 2016 Feb; 65():277-81. PubMed ID: 26433433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel high thrust-weight ratio linear ultrasonic motor driven by single-phase signal.
    Fan P; Shu X; Yuan T; Li C
    Rev Sci Instrum; 2018 Aug; 89(8):085001. PubMed ID: 30184701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.
    Yao K; Koc B; Uchino K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):1066-71. PubMed ID: 11477764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel method for driving the ultrasonic motor.
    Kim Hw; Dong S; Laoratanakul P; Uchino K; Park Tg
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1356-62. PubMed ID: 12403137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel thin single-phase drive linear ultrasonic motor.
    Ge Y; Ma X; Fan P; Hu X; Yuan T; Wang Y
    Rev Sci Instrum; 2023 Mar; 94(3):035003. PubMed ID: 37012768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.