BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23288093)

  • 1. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.
    Nakano M; Ebina K; Tanaka S
    J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset.
    Sugaya K; Matsubara S; Kagamihara Y; Kawata A; Hayashi H
    PLoS One; 2007 Jul; 2(7):e635. PubMed ID: 17653262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations.
    Laghaei R; Mousseau N
    J Chem Phys; 2010 Apr; 132(16):165102. PubMed ID: 20441310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative characterization of short monomeric polyglutamine peptides by replica exchange molecular dynamics simulation.
    Nakano M; Watanabe H; Rothstein SM; Tanaka S
    J Phys Chem B; 2010 May; 114(20):7056-61. PubMed ID: 20441177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease.
    Wetzel R
    Acc Chem Res; 2020 Oct; 53(10):2347-2357. PubMed ID: 32975927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences.
    Lakhani VV; Ding F; Dokholyan NV
    PLoS Comput Biol; 2010 Apr; 6(4):e1000772. PubMed ID: 20442863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
    Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aggregation Free Energy Landscapes of Polyglutamine Repeats.
    Chen M; Tsai M; Zheng W; Wolynes PG
    J Am Chem Soc; 2016 Nov; 138(46):15197-15203. PubMed ID: 27786478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein.
    Côté S; Wei G; Mousseau N
    J Phys Chem B; 2012 Oct; 116(40):12168-79. PubMed ID: 22978784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal.
    Kandola T; Venkatesan S; Zhang J; Lerbakken BT; Von Schulze A; Blanck JF; Wu J; Unruh JR; Berry P; Lange JJ; Box AC; Cook M; Sagui C; Halfmann R
    Elife; 2023 Nov; 12():. PubMed ID: 37921648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells.
    Kar K; Arduini I; Drombosky KW; van der Wel PC; Wetzel R
    J Mol Biol; 2014 Feb; 426(4):816-29. PubMed ID: 24291210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-hairpin-mediated nucleation of polyglutamine amyloid formation.
    Kar K; Hoop CL; Drombosky KW; Baker MA; Kodali R; Arduini I; van der Wel PC; Horne WS; Wetzel R
    J Mol Biol; 2013 Apr; 425(7):1183-97. PubMed ID: 23353826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils.
    Huynen C; Willet N; Buell AK; Duwez AS; Jerôme C; Dumoulin M
    Biochim Biophys Acta; 2015 Mar; 1854(3):239-48. PubMed ID: 25489872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like fibril formation by polyQ proteins: a critical balance between the polyQ length and the constraints imposed by the host protein.
    Scarafone N; Pain C; Fratamico A; Gaspard G; Yilmaz N; Filée P; Galleni M; Matagne A; Dumoulin M
    PLoS One; 2012; 7(3):e31253. PubMed ID: 22438863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths.
    Priya SB; Gromiha MM
    J Cell Biochem; 2019 Jun; 120(6):10519-10529. PubMed ID: 30672003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation between α-helix and β-sheet structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics simulations.
    Chiang HL; Chen CJ; Okumura H; Hu CK
    J Comput Chem; 2014 Jul; 35(19):1430-7. PubMed ID: 24831733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
    Punihaole D; Workman RJ; Hong Z; Madura JD; Asher SA
    J Phys Chem B; 2016 Mar; 120(12):3012-26. PubMed ID: 26947327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possible structural models for polyglutamine aggregation: a molecular dynamics simulations study.
    Zhou ZL; Zhao JH; Liu HL; Wu JW; Liu KT; Chuang CK; Tsai WB; Ho Y
    J Biomol Struct Dyn; 2011 Apr; 28(5):743-58. PubMed ID: 21294586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance.
    Hoop CL; Lin HK; Kar K; Hou Z; Poirier MA; Wetzel R; van der Wel PC
    Biochemistry; 2014 Oct; 53(42):6653-66. PubMed ID: 25280367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and disaggregation of asparagine repeat-containing peptides.
    Lu X; Murphy RM
    J Pept Sci; 2014 Nov; 20(11):860-7. PubMed ID: 25044797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.