These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23288366)

  • 1. Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds.
    Barh D; Gupta K; Jain N; Khatri G; León-Sicairos N; Canizalez-Roman A; Tiwari S; Verma A; Rahangdale S; Shah Hassan S; dos Santos AR; Ali A; Guimarães LC; Thiago Jucá Ramos R; Devarapalli P; Barve N; Bakhtiar M; Kumavath R; Ghosh P; Miyoshi A; Silva A; Kumar A; Misra AN; Blum K; Baumbach J; Azevedo V
    Integr Biol (Camb); 2013 Mar; 5(3):495-509. PubMed ID: 23288366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens.
    Barh D; Jain N; Tiwari S; Parida BP; D'Afonseca V; Li L; Ali A; Santos AR; Guimarães LC; de Castro Soares S; Miyoshi A; Bhattacharjee A; Misra AN; Silva A; Kumar A; Azevedo V
    Chem Biol Drug Des; 2011 Jul; 78(1):73-84. PubMed ID: 21443692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate Kinase (AcK) is Essential for Microbial Growth and Betel-derived Compounds Potentially Target AcK, PhoP and MDR Proteins in M. tuberculosis, V. cholerae and Pathogenic E. coli: An in silico and in vitro Study.
    Tiwari S; Barh D; Imchen M; Rao E; Kumavath RK; Seenivasan SP; Jaiswal AK; Jamal SB; Kumar V; Ghosh P; Azevedo V
    Curr Top Med Chem; 2018; 18(31):2731-2740. PubMed ID: 30663567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis.
    Hassan SS; Tiwari S; Guimarães LC; Jamal SB; Folador E; Sharma NB; de Castro Soares S; Almeida S; Ali A; Islam A; Póvoa FD; de Abreu VA; Jain N; Bhattacharya A; Juneja L; Miyoshi A; Silva A; Barh D; Turjanski A; Azevedo V; Ferreira RS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S3. PubMed ID: 25573232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks.
    Folador EL; de Carvalho PV; Silva WM; Ferreira RS; Silva A; Gromiha M; Ghosh P; Barh D; Azevedo V; Röttger R
    BMC Syst Biol; 2016 Nov; 10(1):103. PubMed ID: 27814699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of genome organization and gene content of Corynebacterium pseudotuberculosis.
    D'Afonseca V; Prosdocimi F; Dorella FA; Pacheco LG; Moraes PM; Pena I; Ortega JM; Teixeira S; Oliveira SC; Coser EM; Oliveira LM; Corrêa de Oliveira G; Meyer R; Miyoshi A; Azevedo V
    Microbiol Res; 2010 May; 165(4):312-20. PubMed ID: 19720513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Gao S; Nguyen NN; Fan M; Jin J; Liu B; Zhao L; Xiong G; Tan M; Li S; Wong L
    Biol Direct; 2014 Apr; 9():5. PubMed ID: 24708540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Yersinia pestis and Escherichia coli strains by whole cell and outer membrane protein extracts with mass spectrometry-based proteomics.
    Jabbour RE; Wade MM; Deshpande SV; Stanford MF; Wick CH; Zulich AW; Snyder AP
    J Proteome Res; 2010 Jul; 9(7):3647-55. PubMed ID: 20486690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of protein-protein interactions between human host and a pathogen and its application to three pathogenic bacteria.
    Krishnadev O; Srinivasan N
    Int J Biol Macromol; 2011 May; 48(4):613-9. PubMed ID: 21310175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico comparison of Yersinia pestis and Yersinia pseudotuberculosis transcriptomes reveals a higher expression level of crucial virulence determinants in the plague bacillus.
    Chauvaux S; Dillies MA; Marceau M; Rosso ML; Rousseau S; Moszer I; Simonet M; Carniel E
    Int J Med Microbiol; 2011 Feb; 301(2):105-16. PubMed ID: 20951640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv.
    Wang Y; Cui T; Zhang C; Yang M; Huang Y; Li W; Zhang L; Gao C; He Y; Li Y; Huang F; Zeng J; Huang C; Yang Q; Tian Y; Zhao C; Chen H; Zhang H; He ZG
    J Proteome Res; 2010 Dec; 9(12):6665-77. PubMed ID: 20973567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis.
    Zhang CG; Gonzales AD; Choi MW; Chromy BA; Fitch JP; McCutchen-Maloney SL
    Proteomics; 2005 May; 5(7):1877-88. PubMed ID: 15825148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages.
    Bi Y; Wang X; Han Y; Guo Z; Yang R
    Scand J Immunol; 2012 Dec; 76(6):541-51. PubMed ID: 22882408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering New Pathogen-Host Protein-Protein Interactions by Pairwise Structure Similarity.
    Cui T; Li W; Liu L; Huang Q; He ZG
    PLoS One; 2016; 11(1):e0147612. PubMed ID: 26799490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets.
    Radusky LG; Hassan S; Lanzarotti E; Tiwari S; Jamal S; Ali J; Ali A; Ferreira R; Barh D; Silva A; Turjanski AG; Azevedo VA
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S9. PubMed ID: 26041381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putative virulence factors of Corynebacterium pseudotuberculosis FRC41: vaccine potential and protein expression.
    Santana-Jorge KT; Santos TM; Tartaglia NR; Aguiar EL; Souza RF; Mariutti RB; Eberle RJ; Arni RK; Portela RW; Meyer R; Azevedo V
    Microb Cell Fact; 2016 May; 15():83. PubMed ID: 27184574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity of commercial citrus-based natural extracts against Escherichia coli O157:H7 isolates and mutant strains.
    Nannapaneni R; Muthaiyan A; Crandall PG; Johnson MG; O'Bryan CA; Chalova VI; Callaway TR; Carroll JA; Arthington JD; Nisbet DJ; Ricke SC
    Foodborne Pathog Dis; 2008 Oct; 5(5):695-9. PubMed ID: 18851678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of outer membrane proteins of Yersinia pestis and Yersinia pseudotuberculosis strains isolated from India.
    Khushiramani R; Tuteja U; Shukla J; Batra HV
    Indian J Exp Biol; 2004 May; 42(5):508-14. PubMed ID: 15233478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev.
    Riegel P; Ruimy R; de Briel D; Prévost G; Jehl F; Christen R; Monteil H
    FEMS Microbiol Lett; 1995 Mar; 126(3):271-6. PubMed ID: 7729671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.