BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23288634)

  • 21. Cancer Drug Development: New Targets for Cancer Treatment.
    Curt GA
    Oncologist; 1996; 1(3):II-III. PubMed ID: 10387987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients.
    Calza S; Hall P; Auer G; Bjöhle J; Klaar S; Kronenwett U; Liu ET; Miller L; Ploner A; Smeds J; Bergh J; Pawitan Y
    Breast Cancer Res; 2006; 8(4):R34. PubMed ID: 16846532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug development for cancer chemoprevention: focus on molecular targets.
    Johnson KA; Brown PH
    Semin Oncol; 2010 Aug; 37(4):345-58. PubMed ID: 20816505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selecting endocrine therapy for breast cancer: what role does HER-2/neu status play?
    Prowell TM; Armstrong DK
    Semin Oncol; 2006 Dec; 33(6):681-7. PubMed ID: 17145348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the Tumor Microenvironment in Breast Cancer.
    Soysal SD; Tzankov A; Muenst SE
    Pathobiology; 2015 Sep; 82(3-4):142-52. PubMed ID: 26330355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basal phenotype breast cancer: implications for treatment and prognosis.
    Pazaiti A; Fentiman IS
    Womens Health (Lond); 2011 Mar; 7(2):181-202. PubMed ID: 21410345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The practical value of breast cancer molecular classification].
    Duda-Szymańska J; Sporny S
    Pol Merkur Lekarski; 2011 Jul; 31(181):5-8. PubMed ID: 21870701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the HER-2/neu oncogene in gynecologic cancers.
    Cirisano FD; Karlan BY
    J Soc Gynecol Investig; 1996; 3(3):99-105. PubMed ID: 8796816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breast cancer molecular subtypes respond differently to preoperative chemotherapy.
    Rouzier R; Perou CM; Symmans WF; Ibrahim N; Cristofanilli M; Anderson K; Hess KR; Stec J; Ayers M; Wagner P; Morandi P; Fan C; Rabiul I; Ross JS; Hortobagyi GN; Pusztai L
    Clin Cancer Res; 2005 Aug; 11(16):5678-85. PubMed ID: 16115903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hitting multiple targets in HER2-positive breast cancer: proof of principle or therapeutic opportunity?
    Geuna E; Milani A; Redana S; Rossi V; Valabrega G; Aglietta M; Montemurro F
    Expert Opin Pharmacother; 2011 Mar; 12(4):549-65. PubMed ID: 21208143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells.
    Vazquez-Martin A; Colomer R; Brunet J; Menendez JA
    Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting fatty acid synthase-driven lipid rafts: a novel strategy to overcome trastuzumab resistance in breast cancer cells.
    Menendez JA; Vellon L; Lupu R
    Med Hypotheses; 2005; 64(5):997-1001. PubMed ID: 15780499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CORRELATION BETWEEN CLINICAL PATHOLOGY OF LUMINAL B BREAST CANCER AND DETERMINATION OF ESTROGEN RECEPTOR, PROGESTERONE RECEPTOR AND HER2 EXPRESSION COMBINED WITH NUCLEAR MORPHOLOGY.
    Yin D; Wang YL; Wang YF; Yang L; Zhang L; Tang C; Xie W; Ma Y
    J Biol Regul Homeost Agents; 2015; 29(3):579-87. PubMed ID: 26403396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does microenvironment contribute to the etiology of estrogen receptor-negative breast cancer?
    Barcellos-Hoff MH
    Clin Cancer Res; 2013 Feb; 19(3):541-8. PubMed ID: 23325583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment.
    Nwabo Kamdje AH; Seke Etet PF; Vecchio L; Muller JM; Krampera M; Lukong KE
    Cell Signal; 2014 Dec; 26(12):2843-56. PubMed ID: 25093804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: Scandinavian Breast Group Trial 9401.
    ; Tanner M; Isola J; Wiklund T; Erikstein B; Kellokumpu-Lehtinen P; Malmström P; Wilking N; Nilsson J; Bergh J
    J Clin Oncol; 2006 Jun; 24(16):2428-36. PubMed ID: 16682728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular subtyping of breast cancer: opportunities for new therapeutic approaches.
    Mullan PB; Millikan RC
    Cell Mol Life Sci; 2007 Dec; 64(24):3219-32. PubMed ID: 17957336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cancer-Associated Fibroblasts in Breast Cancer Treatment Response and Metastasis.
    Fernández-Nogueira P; Fuster G; Gutierrez-Uzquiza Á; Gascón P; Carbó N; Bragado P
    Cancers (Basel); 2021 Jun; 13(13):. PubMed ID: 34201840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA repair and personalized breast cancer therapy.
    Li SX; Sjolund A; Harris L; Sweasy JB
    Environ Mol Mutagen; 2010; 51(8-9):897-908. PubMed ID: 20872853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs.
    Harwansh RK; Deshmukh R
    Crit Rev Oncol Hematol; 2020 Oct; 154():103070. PubMed ID: 32871325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.